
Global Journal of Computer Science and Technology Vol. 10 Issue 15 (Ver. 1.0) December 2010 P a g e | 27

Metrics and Heuristics in Software Engineering
Rakesh Kumar1, Deepali Gupta2

Abstract- Heuristics plays an important role in software
development and are widely used to provide a link between
design principles and software measurement. They offer
insightful information based upon experience that is known to
work in practice. Heuristics are not meant to be exact; in fact,
they derive their benefits from this imprecision by providing
an informal guide to good and bad practices. They provide a
means by which knowledge and experience can be delivered
from the expert to the novice. The paper is set out to bring
techniques for building maintainable object oriented software
closer to the developer in the form of design heuristics.
Heuristics document common design problems that developers
encounter during software development. Some heuristics in
software engineering can be expressed in high-level abstract
terms while others are more specific. The heuristic catalogue
provides a comprehensive reference point for both novice and
expert developers to apply well-documented techniques for
building maintainable software.
Keywords- Heuristics, OO Design, Metrics, Software
Engineering and software metrics.

I. INTRODUCTION
oftware engineering is the systematic collection of
decades of programming experience together with the

innovations made by researchers towards developing high
quality software in a cost effective manner. In other words,
software engineering is a systematic & cost effective
approach to develop software. The basic objective of
software engineering is to develop methods for developing
software that can scale up & can be used to consistently
develop high quality software at low cost. The
improvements to software engineering over the last four
decades have indeed been remarkable. Notable changes
have occurred in software from error correction to error
prevention. Now there are several development activities
apart from coding like design, testing & maintenance. A lot
of effort is now paid to requirements specification. Periodic
reviews, testing, documentation, software project
management are carried out during all stages of software
development process. Software engineering has traditionally
been an expensive and time-intensive process. Object-
oriented analysis and design is the principal industry-proven
methodology that answers the call for a more cost-effective,
faster way to develop software and systems [6]. The basic
design behind OOD is fundamentally different from the
paradigm of function oriented design. In Object Oriented
Design, data and operations are considered

About1 - Reader, Department of Computer Science and Applications,
Kurukshetra University, Kurukshetra, India. (Telephone: 09896336145
email: rsagwal@rediffmail.com)
About2- Dean Academics, Geeta Institute of Management and Technology,
Kanipla, Kurukshetra, India. (Telephone: 09215710291 email:
deepali_gupta2000@yahoo.com)

together, where as in case of function oriented approach the
two are kept separate.Hence, OO design is one where the
final system is represented in terms of object classes,
relationships between objects and relationships between
classes. An object is an instance of a class & has state,
behaviour and identity. Key features of OOD are
inheritance, information hiding, encapsulation,
polymorphism, low coupling, high cohesion and
modularity.A key element in software process is
measurement. Software engineering, by is nature, is a
quantitative discipline. Within the software engineering
context a measure provides a quantitative indication of the
extent, amount, dimension, capacity or size of some attribute
of a product or process. Measurement is the act of
determining a measure. The IEEE standard glossary [2]
defines metric as “a quantitative measure of the degree to
which a system, component, or process processes a given
attribute”. Software metrics provide a quantitative way to
assess the quality of internal product attributes, there by
enabling a software engineer to assess quality before the
product is built. Metrics provide the insight necessary to
create effective analysis and design models, solid code, and
thorough tests.
There are set of attributes [1] defined that should be
encompassed by effective software metrics. These are: -

1. Simple and computable: - It should be relatively
easy to learn how to derive the metric and its
computation should not demand inordinate effort
and time.

2. Empirically and intuitively persuasive: - The
metric should satisfy engineer‟s intuitive notions
about the product attribute under consideration.

3. Consistent and objective: - The metric should
always yield results that are unambiguous.

4. Consistent in the use of units and dimensions: -
The mathematical computation used should be
consistent in the use of units and dimensions.

5. Programming language independent: - Metric
should be based on analysis model, design model,
or the structure of the program itself.

6. An effective mechanism for high quality
feedback: - Metric should lead to higher quality
end product.

II. OBJECTIVES

The aim of Object Oriented (OO) Metrics is to predict the
quality of the object oriented software products. Various
attributes, which determine the quality of the software,
include maintainability, defect density, fault proneness,
normalized rework, understandability, reusability etc.Object
Oriented (OO) Metrics are required because in OO code,
complexity lies in interaction between objects, a large

S

GJCST Classification
 I.2.8, D.2.8, D.4.8

P a g e |28 Vol.10 Issue 15 (Ver.1.0) December 2010 Global Journal of Computer Science and Technology

portion of code is declarative, OO models real life objects:
classes, objects, inheritance, encapsulation, message
passing. Software metrics helps to improve software
process and its product. The use of object oriented software
development techniques introduces new elements to
software complexity both in software development process
and in the final product [8].Our research investigates ways
to help designers with the task of understanding, evaluating
and improving their software products. While we view the
art of design and the judgments of how to apply heuristics as
beyond the reach of current technology, we argue that tools
can provide valuable information to assist the designer with
these judgments. OOD heuristics encapsulate software
problems and their solutions in supporting an informal
approach to design evaluation. Software design and
development involves a range of practices with varying
levels of formality: examples include formal methods,
coding styles, design patterns and test-driven development.
The common goal is the production of high quality
software.However, quality is a concept that can not be
measured directly. In order to measure and understand
quality, it is necessary to relate it to measurable quantities.
The field of software metrics deals with the identification of
meaningful quantitative measures of specific properties of
software.Heuristics enable a softer model to be constructed
in order to obtain a more holistic and subjective, view of
quality. This potentially places a greater burden on the
developers who must interpret this view since it consists of
potentially conflicting indicators with varying degrees of
precision and relevance. Heuristics may occur as individual
pieces of developers‟ or may be presented as a suite
covering multiple aspects of software development.

III. HEURISTICS IN SOFTWARE ENGINEERING
Everyday in our life, we do make the use of heuristic to
solve the problem and software engineering is not an
exception. In the past also we are seeing the use of some
metric based heuristics in design and development of the
software. For example, if the number of parameters in a
function is more than five gives impression that module may
not be having function cohesion. The heuristics are not
written as hard and fast rules; they are meant to serve as
warning mechanisms which allow the flexibility of ignoring
the heuristic as necessary. Use of heuristics in modern OO
software engineering has also been observed. Design is a
difficult task because it involves finding compromises
between conflicting pressures, cost and reliability. Designers
must find ways to provide specific capabilities required by
stakeholders, while attaining sufficient quality in emergent
properties such as usability, efficiency, and flexibility.
Software designers aim to satisfy the expectations of
stakeholders by meeting functional and non-functional
requirements.But in order to make this possible, they must
first address the needs of the software developers
themselves. Keeping the complexity of the design in check
is foremost among these. Object-orientation (OO) allows
software to be structured in a way that helps to manage
complexity and change. However, as software reuse

practitioners have discovered, realizing the benefits of OO is
not straightforward. Competence with the mechanisms of
classes and objects, attributes and methods, inheritance and
polymorphism is far from sufficient to ensure successful
designs.Metric-based heuristic framework is used to detect
and locate object-oriented design flaws from the source code
[7]. It is accomplished by evaluating design quality of an
object-oriented system through quantifying deviations from
good design heuristics and principles.Classes and Objects
are the Building Blocks of the Object-Oriented Paradigm.
Some of the heuristics proposed by Riel [3] are listed in
Table 1 as follows:

Sno. Heuristics
1 All data should be hidden within its class.
2 Users of a class must be dependent on its

public interface, but a class should not be
dependent on its users.

3 Minimize the number of messages in the
protocol of a class.

4

Implement a minimal public interface that all
classes understand.

5

Do not put implementation details such as
common-code private functions into the public
interface of a class.

6

Do not clutter the public interface of a class
with things that users of that class are not able
to use or are not interested in using.

7

A class should only use operations in the public
interface of another class or has nothing to do
with that class.

8

A class should capture one and only one key
abstraction.

9

Keep related data and behavior in one place.

10

Spin off non related information into another
class (i.e., non communicating behavior).

11

Be sure the abstractions that you model are
classes and not simply the roles objects play.

Table 1. List of heuristics proposed by Riel.

Riel [3] documents 61 "golden rules" for OO design, while
Fowler and Beck describe 22 code smells [4]. Smells evokes
a subjective, subtle process of perceiving something about a
design. Beck and Fowler noted that code smells do not lend
themselves to automatic quantification [4]. The designer
must form an impression of the net product of many factors
at work in the design. This requires judgment and insight
beyond the capabilities of simple automata. A notable
characteristic of design patterns is that they often break
rules. For example, the Composite pattern advocates the use
of methods that are overridden to do nothing, contrary to a
common maxim, expressed by Riel‟s heuristic as “It should
be illegal for a derived class to override a base class method
with a NOP method, i.e. a method which does nothing.”
However, the Gang of Four chose to break this rule

Global Journal of Computer Science and Technology Vol. 10 Issue 15 (Ver. 1.0) December 2010 P a g e | 29

deliberately, in their words preferring transparency over
safety. Many similar examples of conflicting forces can be
found. Some conflicts are so pervasive that they apply to
nearly all design situations. Separation of concerns, for
example, encourages decoupling portions of a design, while
another heuristics, “Keep related data and behavior in one
place” often suggests the opposite. Even within an organized
set of heuristics, conflicts occur. One heuristic says
“Theoretically, inheritance hierarchies should be deep, i.e.
the deeper the better”, while another adds the qualification
that “In practice, inheritance hierarchies should be no deeper
than an average person can keep in his or her short-term
memory. A popular value for this depth is six”. Heuristics
are a valuable tool for identifying design forces (whether
conflicting or not) and evaluating design quality, but their
application is not straightforward for many reasons [5], such
as:
Lack of consensus on which heuristics should be
adopted: Some conflicting heuristics usefully illuminate
matters of concern to the designer. Other conflicts, however,
reflect differing design philosophies, and a particular
designer is likely to be interested only in one side of the
debate. Many of the tenets arising from software reuse
culture, for example, are in opposition to more recent
refactoring and agile methods approaches. The open/closed
principle, for example, encourages anticipation of future
needs by making the design open for extension (reusable),
but without requiring modification of existing code;
refactoring culture discourages anticipation of future needs
and prefers modifying existing code when necessary. This
cultural difference might show up in unexpected ways, such
as a stronger preference for small methods in the reuse
culture, so that methods constitute small overridable units.
Nebulous definitions: One heuristic, for example, says “A
class should capture one and only one key abstraction”, but
rigorously specifying the meaning of “key abstraction” is
problematic. Similarly, heuristic “Model the real world
whenever possible”, is only as firm as our grip on reality.
Subjectivity and calibration: Code smells require the
designer to judge when some intangible threshold has been
crossed. The “large class smell”, “lazy class smell” and
“long method smell” are obvious examples where different
standards might apply. The relative importance of
conflicting heuristics is also dependent on the value system
of the designer. If breaking up a large class produces a lazy
class, is the result better?
Interpretation in different contexts: Many heuristics are
expressed abstractly, in order to apply to any OO design. It
may be necessary, however, to adapt a heuristic to local
conditions. For example, when deciding if an inheritance
hierarchy is too deep, should the root class be counted in
programming languages that enforces a single root? Or, in
an organisation that has adopted a refactoring approach to
software development, how much emphasis should be
placed on a heuristic motivated by software reuse, such as
heuristic “All base classes should be abstract classes”?
Diverse levels of abstraction. Some heuristics can be
interpreted at different levels. For example, “All data should

be hidden within its class”, might be viewed as a syntactic
restriction make attributes private or as a semantic one,
which might also discourage the use of getters. A “long
method smell” could be detected at a lexical level by
counting lines of code, at a syntactic level by counting
statements and expressions, at a language semantic level by
counting method invocations, collaborators, etc, or at a
problem-domain semantic level by gauging the conceptual
size of the method.
Information overload: Heuristics are intended to help
software engineers manage the complexity of software, but
injudicious application of heuristics could compound the
problem.
Acquiring relevant data and relating it to heuristics:
Many heuristics require substantial data gathering. Heuristic
“Minimize fan-out in a class” and another “Most of the
methods defined on a class should be using most of the data
members most of the time” are examples. Additionally, the
correspondence between available information and
heuristics is not always clear.These issues, and the inherent
fuzziness of heuristics, make automated support of
heuristics difficult. In consequence, designers usually must
gauge the quality of their products without assistance from
tools. The designer builds a mental model of the software,
and evaluates, according to a subjective, and perhaps even
subconscious, process that is likely to be informed by
heuristics, but may explicitly apply few.

IV. CONCLUSION

One of the mature engineering disciplines is the ability of its
practitioners to quantify the quality of a product that is the
ability to establish metrics. The use of metrics can be a
valuable aid in understanding the effect of actions that are
implemented for improving the software development
process. The metrics provide visibility and control for the
complex software development process, and therefore they
are valuable for providing guidance on improving the
software development process, and for meeting
organizational goals to improve software quality and
productivity. This causes new requirements for software
metrics. While some of the traditional metrics can be used,
new metrics must be introduced. The introduction of object-
oriented (OO) methods to software development has
changed the process of building and managing software in a
profound way.Quality of software is increasingly important
and testing related issues are becoming crucial for software.
Although there is diversity in the definition of software
quality, it is widely accepted that a project with many
defects lacks quality. Methodologies and techniques for
predicting the testing effort, monitoring process costs, and
measuring results can help in increasing efficiency of
software testing. Prediction of fault-prone modules supports
software quality engineering through improved scheduling
and project control. It is a key step towards steering the
software testing and improving the effectiveness of the
whole process In order to measure and understand quality, it
is necessary to relate it to measurable quantities. Heuristics
provide a link between sets of abstract design principles and

P a g e |30 Vol.10 Issue 15 (Ver.1.0) December 2010 Global Journal of Computer Science and Technology

quantitative software metrics. They are an important part of
software design and are becoming more widely used.
Effective visualization of heuristics includes quantitative,
qualitative and ambient aspects. Visualisation of heuristics
provides many challenges. Heuristics are likely to be studied
both individually and in comparison with others.The
researchers are not primarily concerned with the relevance
or validity of individual heuristics: the main focus is on their
evaluation and interpretation. Our work is intended to
provide the basis for an exploratory framework in which
heuristics may be postulated, explored and managed.

V. REFERENCES
1) Lem O. Ejiogu, Software engineering with formal

metrics, QED Information Sciences, Inc.,
Wellesley, MA, 1991.

2) IEEE Standards Collection: Software Engineering,
IEEE Standard 610.12-1990, IEEE, 1993.

3) Riel A., Object-Oriented Design Heuristics,
Addison-Wesley, 1996.

4) Fowler, M., Refactoring: Improving the Design of
Existing Code, Addison - Wesley, 1999.

5) Churcher, N., et al., “Supporting OO Design
Heuristics”, Proceedings of the 2007 Australian
Software Engineering Conference, IEEE Computer
Society, 2007, pp. 101-110.

6) Berard, E.V, “Essays on Object-Oriented Software
Engineering”, vol. 1, Addison Wesley, 1993.

7) Salehie, M., Li, S., Tahvildari, L., “A Metric-Based
Heuristic Framework to Detect Object-Oriented
Design Flaws”,Proceedings of 14th IEEE
International Conference on Program
Comprehension, IEEE Computer Society, 2006,
pp.159-168.

8) Brooks, I., “Object-Oriented Metrics Collection
and Evaluation with a Software Process,” Proc.
OOPSLA ‟93 Workshop Processes and Metrics for
Object-Oriented Software Development,
Washington, D.C., 1993.

	Metrics and Heuristics in Software Engineering
	Authors
	Abstract
	I. INTRODUCTION
	II. OBJECTIVES
	III. HEURISTICS IN SOFTWARE ENGINEERING
	IV. CONCLUSION
	V. REFERENCES

