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5

Abstract6

Image segmentation is an indispensable part of the visualization of human tissues, particularly7

during analysis of Magnetic Resonance (MR) images. Unfortunately images always contain a8

significant amount of noise due to operator performance, equipment, and the environment can9

lead to serious inaccuracies with segmentation. A segmentation technique based on an10

extension to the traditional C-means (FCM) clustering algorithm is proposed in this paper. A11

neighborhood attraction, which is dependent on the relative location and features of12

neighboring pixels considered.. The degree of attraction is optimized by a Particle Swarm13

Optimization model. Paper demonstrates the superiority of the proposed technique to14

FCM-based method. This segmentation method is component of an MR image-based15

classification system for tumors, currently being developed.16

17

Index terms—18

1 INTRODUCTION19

n the analysis of medical images for computer-aided diagnosis and therapy, segmentations is often required as a20
preliminary stage. Medical image segmentation is a complex and challenging task due to the intrinsic nature of21
the images. The brain has a particularly complicated structure and its precise segmentation is very important for22
detecting prescribe appropriate therapy. Magnetic resonance imaging (MRI) is an important diagnostic imaging23
technique for the early detection of abnormal changes in tissues and organs. It possesses good contrast resolution24
for different tissues and has advantages over computerized tomography (CT) for brain studies due to its superior25
contrast properties. Therefore, the majority of research in medical image segmentation concerns MR images.26

Many image processing techniques have been proposed for brain MRI segmentation, most notably thresholding,27
region-growing, and clustering. Since the distribution of tissue intensities in brain images is very complex, it leads28
to difficulties of threshold determination.29

Therefore, thresholding methods are generally restrictive and have to be combined with other methods [1],30
[2]. Region growing extends thresholding by combining it with connectivity conditions or region homeogeneity31
criteria. Successful methods require precise anatomical information to locate single or multiple seed pixels for each32
region and together with their associated homogeneity [3]- [5], Clustering is the most popular method for medical33
image segmentation, with fuzzy c-means (FCM) clustering and expectationmaximization (EM) algorithms being34
the typical methods. The applications of the EM algorithm to brain MR image segmentation were reported35
by Wells et al. [6] and Leemput et al. [7]. A common disadvantage of EM algorithms is that the intensity36
distribution of brain images is modeled as a normal distribution, which is untrue, especially for noisy images.37

The FCM algoirthm has also been employed by many researchers. Li et al. [8] presented a knowledgebased38
classification and tissue labeling approach to initially segment MR brain images using the FCM algorithm39
FCM was shown to be superior on normal brains, but worse on abnormal brains with edema, tumor, etc.40
Pham and Prince [10] extended the traditional FCM algorithm to deal with MR images corrupted by intensity41
inhomogeneities. Unfortunately, the greatest shortcoming of FCM is its over-sensitivity to noise, which is also42
a flaw of many other intensity-based segmentation methods. Since medical images always include considerable43
uncertainty and unknown noise, this generally leads to further degradation with segmentation.44
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3 3) STRUCTURE OF PARTICLE SWARM ALGORITHM

An MR image-based brain tumor classification system is being developed by the authors, and this was the45
initial motivation to develop a robust segmentation method, since accurate and robust segmentation is a key46
stage in successful classification. Many extensions of the FCM algorithm have been reported in the literature47
to overcome the effects of noise, but most of them still have major drawbacks. In this paper, new extensions48
to FCM are described which consider two influential factors in segmentation, both of which address issues of49
neighborhood attraction. One is the feature difference between neighboring pixels in the image; the other is50
the relative locations of neighboring pixels. Segmentation is therefore decided not only by the pixel intensities51
themselves, but also by the neighboring pixel intensities and locations. Consideration of these neighboring pixels52
greatly restrains the influence of noise. The parameters referring to the degree of neighborhood attraction are53
determined using a simple PSO model.54

2 1) IFCM Algorithm55

To overcome the drawbacks of FCM, Shen et al. presented an improved algorithm. They found that the similarity56
function d2 ??xj, vi) is the key to segmentation success. In their approach, an attraction entitled neighborhood57
attraction is considered to exist between neighboring pixels. During clustering, each pixel attempts to attract58
its neighboring pixels towards its own cluster. This neighborhood attraction depends on two factors; the pixel59
intensities or feature attraction ?, and the spatial position of the neighbors or distance attraction ?, which also60
depends on the neighborhood structure. Considering this neighborhood attraction, they defined the similarity61
function as below:( ) ( ) ij ij i j i j F H v x v x d ? ? ? ? ? = 1 , 2 262

where Hij represents the feature attraction and Fij represents the distance attraction. Magnitudes of two63
parameters ? and ? are between 0 and 1; adjust the degree of the two neighborhood attractions. Hij and Fij are64
computed in a neighborhood containing S pixels as follow:? ? s jk k s jkgjk k ij H µ µ 1 1 ? ? s k s q k ij ik jk65
ik F 2 2 2 1 1 µ µ With ( ) ( ) 2 2 , k j k j jk k j b b a a q x x gjk ? + ? = ? =66

where (aj,bj) and (ak,bk) denote the coordinate of pixel j and k, respectively. It should be noted that a higher67
value of ? leads to stronger feature attraction and a higher value of ? leads to stronger distance attraction.68
Optimized values of these parameters enable the best segmentation results to be achieved. However, inappropriate69
values can be detrimental. Therefore, parameter optimization is an important issue in IFCM algorithm that can70
significantly affect the segmentation results.71

2) Parameter Optimization Of IFCM Algorithm Optimization algorithms are search methods, where the goal72
is to find a solution to an optimization problem, such that a given quantity is optimized, possibly subject to73
a set of constrains. Although this definition is simple, it hides a number of complex issues. For example,74
the solution may consist of a combination of different data types, nonlinear constrains may restrict the search75
area, the search space can be convoluted with many candidate solutions, the characteristics of the problem76
may change over time, or the quantity being optimized may have conflicting objectives As mentioned earlier,77
the problem of determining optimum attraction parameters constitutes an important part of implementing the78
IFCM algorithm. Shen et al. ( ??005) computed these two parameters using an ANN through an optimization79
problem. However, designing the neural network architecture and setting its parameters are always complicated80
tasks which slow down the algorithm and may lead to inappropriate attraction parameters and consequently81
degrade the partitioning performance. In this paper, a new computational method based on particle swarm82
optimisation introduced in order to compute optimum values of these two parameters.83

3 3) Structure of Particle Swarm Algorithm84

The PSO conducts searches using a population of particles which correspond to individuals in GAs. The85
population of particles is randomly generated initially. Each particle represents a potential solution and has86
a position represented by a position vector &xi. A swarm of particles moves through the problem space, with the87
moving velocity of each particle represented by a position vector &vi. At each time step, a function fi representing88
a quality measure is calculated by using &xi as input. Each particle keeps track of its own best position, which89
is associated with the best fitness it has achieved so far in a vector & pi. Furthermore, the best position among90
all the particles obtained so far in the population is kept track of as &pg. At each time step ? , by using the91
individual best position, &pi(? ), and global best position, &pg(? ), a new velocity for particle i is updated by92
Where c1 and c2 are acceleration constants and ?1 and ?2 are uniformly distributed random numbers in [0, 1].93
The term &vi is limited to its bounds. If the velocity violates this limit, it is set to its proper limit. w is the94
inertia weight factor and in general, it is set according to the following equation:? . min max max T w w w w ?95
? = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ? ? ? ? ? ? ? ? ? ? i g i i i i x p C x p c w ? + ? + = + 2 2 1 1 1 ( ) ( ) ( ) ()196
1 + + = + ? ? ? ? i i i v h x x March 2011 = = = = = = ©2011 Global Journals Inc. (US)97

Where h max and h0 are positive constants.98
The population of particles tend to cluster together with each particle moving in a random direction. The99

computation of PSO is easy and adds only a slight computation load when it is incorporated into IGA.100
Furthermore, the flexibility of PSO to control the balance between local and global exploration of the problem101
space helps to overcome premature convergence of elite strategy in GAs, and also enhances searching ability. The102
global best individual is shared by the two algorithms, which means the global best individual can be achieved103
by the GA or by PSO, also it can avoid the premature convergence in PSO.104
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After completion of above processes, a new population is produced and the current iteration is completed. We105
iterated the above procedures until a certain criterion is met. At this point, the most fitted particle represented106
the optimum values ? and ?. Simulations are done on one sample Tl weighted MR image. In first experiment,107
noise is absent and in second and third experiments, noise is present and effect of noise increases. In each108
experiment, parameters ? and ? are computed using proposed optimization method based on PSO algorithm.109
Then we used IFCM clustering algorithm in order to segment MR images. Figure ?? shows a noiseless MR image110
and segmented images, from left to right they are, original image, white matter, gray matter and CSF.111

4 II. simulation results112

5 Table1113

In the second experiment, Tl weighted MR image destroyed with Gaussian noise. Figure ?? demonstrates the114
results of segmentation. In third experiment, we increased amount of Gaussian noise and corrupted the original115
image. Figure ?? shows results of segmentation in this case.116

6 III. conclusion117

There are different sources of noise, arising from environment, operator, and equipments. These sources influence118
the medical images. As a result, performance of traditional FCM for segmentation of noisy images reduces.119
IFCM algorithm is proposed to solve sensitivity of FCM algorithm to noise. This version of FCM introduces120
two new parameters X and in order to consider pixel’s neighborhood and location effect. The new parameters121
are computed using an ANN through optimization of an objective function. In this paper a new method based122
on PSOs is introduced for computation of the optimal values of these parameters. Simplified computation of123
X and (, is an Advantage of the proposed algorithm compared with ANN optimization technique. Simulation124
results demonstrated effectiveness of the new proposed method to find optimal values of X and (, that are used125
for efficient segmentation of noisy MR images.126

7 March 2011127

Where ( ) ( )T h h h h o ? ? . max max ? ? =128
Where wmax and wmin is maximum and minimum value of the weighting factor respectively. T is the129

maximum number of iterations and ? is the current iteration number. Based on the updated velocities, each130
particle changes its position according to the following:

Figure 1:
131
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Experimental resultsdemonstrateimproved
performance of FCM clustering algorithm against noisy
MR images. New proposed algorithm based on PSO,
simplifies computation of ? and ? without using
complicated ANN.

Figure 2:
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