
© 2011 B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy, L.S.S.Reddy. This is a research/review paper, distributed under the terms
of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 8 Version 1.0 May 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN: 0975-4172 & Print ISSN: 0975-4350

Performance Issues of Heterogeneous Hadoop Clusters in
Cloud Computing

By B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy, L.S.S.Reddy

Abstract-

Nowadays most of the cloud applications process large amount of data to provide the
desired results. Data volumes to be processed by cloud applications are growing much faster
than computing power. This growth demands new strategies for processing and analyzing
information. Dealing with large data volumes requires two things: 1) Inexpensive, reliable
storagee 2) New tools for analyzing unstructured and structured data. Hadoop is a powerful
open source software platform that addresses both of these problems. The current Hadoop
implementation assumes that computing nodes in a cluster are homogeneous in nature. Hadoop
lacks performance in heterogeneous clusters where the nodes have different computing
capacity. In this paper we address the issues that affect the performance of hadoop in
eterogeneous clusters and also provided some guidelines on how to overcome these
bottlenecks.

Keywords:

GJCST Classification:

H.2.4, H.3.4, C.2.1

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing

Strictly as per the compliance and regulations of:

Cloud Computing, H adoop, H DFS, Maperduce.

©2011 Global Journals Inc. (US)

Performance Issues of Heterogeneous Hadoop
Clusters in Cloud Computing

B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy, L.S.S.Reddy

Abstract- Nowadays most of the cloud applications process
large amount of data to provide the desired results. Data
volumes to be processed by cloud applications are growing
much faster than computing power. This growth demands
new strategies for processing and analyzing information.
Dealing with large data volumes requires two things: 1)
Inexpensive, reliable storagee 2) New tools for analyzing
unstructured and structured data. Hadoop is a powerful open
source software platform that addresses both of these
problems. The current Hadoop implementation assumes that
computing nodes in a cluster are homogeneous in nature.
Hadoop lacks performance in heterogeneous clusters where
the nodes have different computing capacity. In this paper we
address the issues that affect the performance of hadoop in
eterogeneous clusters and also provided some guidelines on
how to overcome these bottlenecks.
Keywords: Cloud Computing, Hadoop, HDFS,
Mapreduce

I. INTRODUCTION

loud computing[1] is a relatively new way of
referring to the use of shared computing
resources, and it is an alternative to having local

servers handle applications. Cloud computing groups
together large numbers of compute servers and other
resources and typically offers their combined capacity
on an on-demand, pay-percycle basis. The end users of
a cloud computing network usually have no idea where
the servers are physically located—they just spin up their
application and start working.

This flexibility is the key advantage to cloud
computing, and what distinguishes it from other forms
of grid or utility computing and software as a service
(SaaS). The ability to launch new instances of an
application with minimal labor and expense allows
application providers to scale up and down rapidly,
recover from a failure, bring up development or test
instances, roll out new versions to the customer base.

The primary concept behind Cloud Computing
isn't a brand new one. John McCarthy within the sixties
imagined that processing amenities is going to be
supplied to everyone just like a utility. The word

About- Department of Computer Science and Engineering, Lakireddy
Bali Reddy College of Engineering, Mylavaram.
E-mail- thirumail@yahoo.com, harshi.5807@gmail.com,
krishna4474@gmail.com, director@lbrce.ac.in

“cloud” has already been utilized in numerous
contexts such as explaining big ATM systems within the
1990s. Nevertheless, it had been following Google’s
BOSS Eric Schmidt utilized the term to explain the
company type of supplying providers over the Web
within 2006. Since then, the term cloud computing has
been used mainly as a marketing term in a variety of
contexts to represent many different ideas. Certainly, the
lack of a standard definition of cloud computing has
generated not only market hypes, but also a fair amount
of skepticism and confusion. For this reason, recently
there has been work on standardizing the definition of
cloud computing. As an example, the work in compared
over 20 different definitions from a variety of sources to
confirm a standard definition. In this paper, we adopt
the definition of cloud computing provided by The
National Institute of Standards and Technology (NIST),
as it covers, in our opinion, all the essential aspects of
cloud computing:
NIST definition of cloud computing[2] Cloud computing
is a model for enabling convenient, ondemand network
access to a shared pool of configurable computing
resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction. The main reason
for the existence of different perceptions of cloud
computing is that cloud computing, unlike other
technical terms, is not a new technology, but rather a
new operations model that brings together a set of
existing technologies to run business in a differentway.
Indeed, most of the technologies used by
cloudcomputing, such as virtualization and utility-based
pricing, are not new. Instead, cloud computing
leverages these existing technologies to meet the
technological and economic requirements of today’s
demand for information technology.

II. RELATED TECHNOLOGIES
Cloud computing is often compared to the

following technologies[3], each of which shares certain
aspects with cloud computing:
Grid Computing: Grid computing is a distributed
computing paradigm that coordinates networked
resources to achieve a common computational
objective. The development of Grid computing was
originally driven by scientific applications which are

C

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

81

M
a
y

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing

©2011 Global Journals Inc. (US)

usually computation-intensive. Cloud computing is
similar to Grid computing in that it also employs
distributed resources to achieve application-level
objectives. However, cloud computing takes one step
further by leveraging virtualization technologies at
multiple levels (hardware and application platform) to
realize resource sharing and dynamic resource
provisioning.
Utility Computing: Utility computing represents the
model of providing resources on-demand and charging
customers based on usage rather than a flat rate. Cloud
computing can be perceived as a realization of utility
computing. It adopts a utility-based pricing scheme
entirely for economic reasons. With on-demand
resource provisioning and utility based pricing, service
providers can truly maximize resource utilization and
minimize their operating costs.

Virtualization: Virtualization is a technology that
abstracts away the details of physical hardware and
provides virtualized resources for high-level
applications. A virtualized server is commonly called a
virtual machine (VM). Virtualization forms the foundation
of cloud computing, as it provides the capability of
pooling computing resources from clusters of servers
and dynamically assigning or reassigning virtual
resources to applications on-demand.

Autonomic Computing: Originally coined by
IBM in 2001, autonomic computing aims at building
computing systems capable of self-management, i.e.
reacting to internal and external observations without
human intervention. The goal of autonomic computing
is to overcome the management complexity of todays
computer systems. Although cloud computing exhibits
certain autonomic features such as automatic resource
provisioning, its objective is to lower the resource cost
rather than to reduce system complexity. In summary,
cloud computing leverages virtualization technology to
achieve the goal of providing computing resources as a
utility. It shares certain aspects with grid computing and
autonomic computing but differs from them in other
aspects. Therefore, it offers unique benefits and
imposes distinctive challenges to meet its requirements.

III. HADOOP
Hadoop[9] is an open source implementation

of the MapReduce parallel processing framework.
Hadoop hides the details of parallel processing,
including distributing data to processing nodes,
restarting subtasks after a failure, and collecting the
results of the computation. This framework allows
developers to write relatively simple programs that focus
on their computation problem, rather than on the nuts
and bolts of parallelization.
Hadoop Components

• Distributed file system (HDFS)
o Single namespace for entire cluster

o Replicates data 3x for fault-tolerance
• MapReduce framework

o Executes user jobs specified as “map”
and “reduce” functions

o Manages work distribution & fault tolerance

Fig 1: Typical Hadoop Cluster

A hadoop Cluster may contain:
• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth within rack, 8 Gbps out of

rack
• Node specs (Yahoo terasort): 8 x 2 GHz cores,

8 GB RAM, 4 disks (= 4 TB?)
• Files split into 128MB blocks
• Blocks replicated across several datanodes

(usually 3)
• Single namenode stores metadata (file names,

block locations, etc)
• Optimized for large files, sequential reads

a) HDFS- Distributed file system over clouds
Google File System (GFS) [6] is a proprietary

distributed file system developed by Google and
specially designed to provide efficient, reliable access
to data using large clusters of commodity servers. Files
are divided into chunks of 64 megabytes, and are
usually appended to or read and only extremely rarely
overwritten or shrunk. Compared with traditional file
systems, GFS is designed and optimized to run on data
centers to provide extremely high data throughputs, low
latency and survive individual server failures. Inspired by
GFS, the open source Hadoop Distributed File System
(HDFS) [4] stores large files across multiple machines.
It achieves reliability by replicating the data across
multiple servers. Similarly to GFS, data is stored on
multiple geo-diverse nodes. The file system is built from
a cluster of data nodes, each of which serves blocks of
data over the network using a block protocol specific to
HDFS. Data is also provided over HTTP, allowing
access to all content from a web browser or other types
of clients. Data nodes can talk to each other to
rebalance data distribution, to move copies around, and
to keep the replication of data high.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

82

M
a
y

©2011 Global Journals Inc. (US)

An advantage of using the HDFS is data
awareness between the jobtracker and tasktracker. The
jobtracker schedules map/reduce jobs to tasktrackers
with an awareness of the data location. An example of
this would be if node A contained data (x,y,z) and node
B contained data (a,b,c). The jobtracker will schedule
node B to perform map/reduce tasks on (a,b,c) and
node A would be scheduled to perform map/reduce
tasks on (x,y,z). This reduces the amount of traffic that
goes over the network and prevents unnecessary data
transfer. When Hadoop is used with other filesystems
this advantage is not available. This can have a
significant impact on the performance of job completion
times, which has been demonstrated when running data
intensive jobs [10]

b) Hadoop Mapreduce overview
MapReduce [5] is one of the most popular

programming models designed for data centers. It was
originally proposed by Google to handle large-scale
web search applications and has been proved to be an
effective programming model for developing data
mining, machine learning and search applications in
data centers. In particular, MapReduce can enhance the
productivity for junior developers who lack the
experience of distributed/parallel development. Hadoop
has been successfully used by many companies
including AOL, Amazon, Facebook, and New York
Times for running their applications on clusters. For
example, AOL used it for running an application that
analyzes the behavioral pattern of their users so as to
offer targeted services.

Although Hadoop is successful in
homogeneous computing environments, a performance
study conducted by Matei Zaharia et al. [12] shows that
MapReduce implemented in the standard distribution of
Hadoop is unable to perform well in heterogeneous
Cloud computing infrastructure such as Amazon EC2 .
Experimental observations reveal that the homogeneity
assumptions of MapReduce can cause wrong and often
unnecessary.

Fig 2: Hadoop Design

speculative execution in heterogeneous
environments, sometimes resulting in even worse
performance than with speculation disabled. This
evaluation and performance results of their enhanced
scheduler in Hadoop demonstrate that Cloud execution
management systems need to be designed to handle
heterogeneity that is present in workloads, applications,
and computing infrastructure.

- Commodity machines (cheap, but unreliable)
- Commodity network
- Automatic fault-tolerance (fewer administrators)
- Easy to use (fewer programmers)

As shown in figure.2 a mapper will map the task
to a datanode where the data is available. Task trackers
will keep track of the work that is being carried by the
datanodes.

IV. PERFORMANCE ISSUES
Several Key factors exist that affect the

performance of Hadoop.

a) Cluster Hardware Configuration
Hadoop was designed based on a new

approach to storing and processing complex data.
Instead of relying on a Storage as Network for massive
storage and reliability then moving it to a collection of
blades for processing, Hadoop handles large data
volumes and reliability in the software tier. Hadoop
distributes data across a cluster of balanced machines
and uses replication to ensure data reliability and fault
tolerance. Because data is distributed on machines with
compute power, processing can be sent directly to the
machines storing the data. Since each machine in a
Hadoop cluster both stores and processes data, they
need to be configured to satisfy both data storage and
processing requirements. Table:1 gives the summary of
the parameters that affect the cluster performance.

Table:1

Hardware Parameters that affect Hadoop
Performance

There are four types of nodes in a basic
Hadoop cluster.

A node referred as a machine
performing a particular

task.

Most of the machines will

Parameter Impact / Purpose

No.of Cores Processing Speed

RAM # trips to disk

Disks per node To support rapid scale up

Disk speed High throughput

Network Topology Communication overhead

function as both datanodes and tasktrackers. These
nodes both store data and perform processing
functions. Recommended specifications for
datanodes/tasktrackers in a balanced Hadoop cluster
are:

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

83

M
a
y

©2011 Global Journals Inc. (US)

•

4 1TB hard disks in a JBOD (Just a Bunch Of

Disks) configuration

•

2 quad core CPUs, running at least 2-2.5GHz

•

16-24GBs of RAM (24-32GBs if you’re

considering HBase)

•

Gigabit Ethernet

The namenode is responsible for coordinating
data

storage on the cluster and the jobtracker for

coordinating data processing. The last type of node is

the secondarynamenode, which can be colocated on
the

namenode machine for small clusters, and will run
on

the same hardware as the namenode for larger
clusters.

We recommend our customers purchase
hardened

machines for running the namenodes and
jobtrackers,

with redundant power and enterprise-grade
RAIDed

disks. Namenodes also require more RAM
relative to

the number of data blocks in the cluster. A
good rule of

thumb is to assume 1GB of namenode
memory for

every one million blocks stored in the
distributed file

system. With 100 datanodes

in a cluster,
32GBs of

RAM on the namenode provides plenty of
room to

grow. We also recommend having a standby
machine to

replace the namenode or jobtracker, in the
case when

one of these fails suddenly.

When you expect your Hadoop cluster to grow
beyond

20 machines we recommend that the initial
cluster be

configured as it were to span two racks,
where each rack

has a top of rack gigabit switch, and
those switches are

connected with a 10 GigE
interconnect or core switch.

Having two logical racks

gives the operations team a

better understand of the
network requirements for innerrack,

and cross-rack
communication.

With a Hadoop cluster in place the team can
start

identifying workloads and prepare to benchmark
those

workloads to identify CPU and IO bottlenecks.
After

some time benchmarking and monitoring, the
team will

have a good understanding as to how
additional

machines should be configured. It is common
to have

heterogeneous Hadoop clusters especially as
they grow

in size. Starting with a set of machines that
are not

perfect for your workload will not be a waste.

Below is a list of various hardware configurations for

different workloads, including our earlier

recommendation[10]

•

Light Processing Configuration
(1U/machine):Two quad core CPUs, 8GB
memory, and 4 disk

drives (1TB or 2TB). Note
that CPU-intensive work

such as natural
language processing involves loading

large

•

Balanced Compute Configuration

(1U/machine): Two quad core CPUs, 16 to
24GB

memory, and 4 disk drives (1TB or 2TB)
directly

attached using the motherboard
controller. These are

often available as twins
with two motherboards and 8

drives in a single
2U cabinet.

•

Storage Heavy Configuration (2U/machine):

Two quad core CPUs, 16 to 24GB memory, and
12

disk drives (1TB or 2TB). The

power
consumption

for this type of machine starts
around ~200W in idle

state and can go as high
as ~350W when active.

•

·Compute Intensive Configuration
(2U/machine): Two

quad core CPUs, 48-72GB
memory, and 8 disk drives

(1TB or 2TB). These
are often used when a combination

of large in-
memory models and heavy reference data

caching is required.

Purchasing appropriate hardware for a Hadoop
cluster

requires benchmarking and careful planning to
fully

understand the workload. Nevertheless, Hadoop
clusters

are commonly heterogeneous and we
recommend

deploying initial hardware with balanced
specifications

when getting started.

b)

application logic related

i.

Tune the number of map and reduce tasks

appropriately

Tuning the number of map and reduce tasks for

a job is

important and easy to overlook. Here are some
rules of

thumb to set these parameters:

•

If each task takes less than 30-40 seconds,

reduce the number of tasks. The task setup and

scheduling overhead is a few seconds, so if
tasks

finish very quickly, you’re wasting time
while not

doing work. JVM reuse can also be
enabled to solve

this problem.

•

If a job has more than 1TB of input, consider

increasing the block size of the input dataset to
256M

or even 512M so that the number of tasks
will be

smaller

•

So long as each task runs for at least 30-40

seconds, increase the number of mapper tasks
to

some multiple of the number of mapper slots
in the

cluster.

•

Don’t schedule too many reduce tasks –

for

most jobs, we recommend a number of reduce
tasks

equal to or a bit less than the number of
reduce slots

in the cluster.

models into RAM before processing data and
should be configured with 2GB RAM/core
instead of 1GB RAM/core.

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

84

M
a
y

©2011 Global Journals Inc. (US)

In a cluster where each node has a local disk, it
is

efficient to move data processing operations to nodes

where application data are located. If data are not

locally available in a processing node, data have to be

migrated via network interconnects to the node that

performs the data processing operations. Migrating
huge

amount of data leads to excessive network
congestion,

which in turn can deteriorate system
performance.

HDFS enables Hadoop MapReduce
applications to

transfer processing operations toward
nodes storing

application data to be processed by the
operations. In a

heterogeneous cluster, the computing
capacities of

nodes may vary significantly. A high-speed
node can

finish processing data stored in a local disk of
the node

faster than low-speed counterparts. After a
fast node

complete the processing of its local input
data, the node

must support load sharing by handling
unprocessed data

located in one or more remote slow
nodes. When the

amount of transferred data due to load
sharing is very

large, the overhead of moving
unprocessed data from

slow nodes to fast nodes
becomes a critical issue

affecting Hadoop’s
performance. To boost the

performance of Hadoop in
heterogeneous clusters, we

aim to minimize data
movement between slow and fast

nodes. This goal can
be achieved by a data placement

scheme[11] that
distribute and store data across multiple

heterogeneous
nodes based on their computing

capacities. Data
movement can be reduced if the

number of file
fragments placed on the disk of each

node is
proportional to the node’s data processing

speed.To
achieve the best I/O performance, one may

make
replicas of an input data file of a Hadoop

application in
a way that each node in a Hadoop cluster

has a local
copy of the input data. Such a data

replication scheme
can, of course, minimize data

transfer among slow and
fast nodes in the cluster during

the execution of the
Hadoop application. The datareplication

approach has
several limitations. First, it is

very expensive to create
replicas in a large-scale cluster.

Second, distributing a
large number of replicas canwasterfully consume
scarce network bandwidth in

Hadoop clusters. Third,
storing replicas requires an

unreasonably large amount
of disk capacity, which in

turn increases the cost of
Hadoop clusters. Although all

replicas can be produced
before the execution of

Hadoop applications, significant
efforts must be make to

reduce the overhead of
generating replicas. If the

datareplication approach is
employed in Hadoop, one

has to address the problem
of high overhead for creating

file replicas by
implementing a low-overhead filereplication

mechanism.
For example, Shen and Zhu

developed a proactive
lowoverhead file replication

scheme for structured peer-
to-peer networks [13]. Shen

and Zhu’s scheme may
be incorporated to overcome this

limitation.

i.

Replication

HDFS is designed to run on highly unreliable
hardware.

On Yahoo’s long-running clusters

we

observe a node

failure rate of 2–3 per 1000 nodes a

day. On new

(recently out of the factory) nodes, the rate

is three

times higher. In order to provide data reliability

HDFS

uses block replication. Initially, each block is
replicated

by the client to three data-nodes. The block

copies are

called replicas. A replication factor of three is

the

default system parameter, which can either be

configured or specified per file at creation time.

Once the block is created, its replication is
maintained

by the system automatically. The name-

node detect

sfailed data-nodes, or missing or corrupted

individual

replicas, and restores their replication by
directing the

copying of the remaining replicas to other

nodes.

Replication is the simplest of known data-
recovery

techniques. Other techniques, such as

redundant block

striping or erasure codes, are
applicable and have been

used in other distributed file

systems such as GFS,

PVFS and Lustre [6, 7, 8]. These

approaches, although

more space efficient, also involve

performance tradeoffs

for data recovery. With striping,

depending on the

redundancy requirements, the system

may need to read

two or more of the remaining data

segments from the

nodes it has been striped to in order

to reconstruct the

missing one. Replication always
needs only one copy.

For HDFS, the most important

advantage of the

replication technique is that it provides

high availability

of data in high demand. This is actively

exploited by the

MapReduce framework, as it increases

replications of

configuration and job library files to avoid

contention

during the job startup, when multiple tasks

access the

same files simultaneously.

Each block replica on a data-node is
represented by a

local (native file system) file. The size

of this file equals

the actual length of the block and

does not require extra

space to round it up to the
maximum block size, as

traditional file systems do.

Thus, if a block is half full it

needs only half of the space

of the full block on the

local drive. A slight overhead is

added, since HDFS also

stores a second, smaller
metadata file for each block

replica, which contains

the

checksums for the block

data.

ii.

Block reports, heartbeats

The name-node maintains a list of registered
data-nodes and blocks belonging to each data-node. A
data-node identifies block replicas in its possession to
the namenode by sending a block report. A block report
contains block ID, length, and the generation stamp for
each block replica. The first block report is sent
immediately after the data-node registration. It reveals
block locations, which are not maintained in the
namespace image or in the journal on the name-node.

c) System Bottlenecks & Resource Under-utilizationii. Take Data locality into consideration

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

85

M
a
y

©2011 Global Journals Inc. (US)

Subsequently, block reports are sent periodically every
hour by default and serve as a sanity check, providing
that the namenode has an up-to-date view of block
replica distribution on the cluster. During normal
operation, data-nodes periodically send heartbeats to
the name-node to indicate that the data-node is alive.
The default heartbeat interval is three seconds. If the
name-node does not receive a heartbeat from a data-
node in 10 minutes, it pronounces the data-node dead
and schedules its blocks for replication on other nodes.

Heartbeats also carry information about total
and used disk capacity and the number of data
transfers currently performed by the node, which plays
an important role in the name-node’s space and load-
balancing decisions. The communication on HDFS
clusters is organized in such a way that the name-node
does not call data-nodes directly. It uses heartbeats to
reply to the data nodes with important instructions. The
instructions include commands to:

• Replicate blocks to other nodes. Remove local
block replicas

• Re-register or shut down the node
• Send an urgent block report

These commands are important for maintaining
the overall system integrity; it is therefore imperative to
keep heartbeats frequent even on big clusters. The
name-node is optimized to process thousands of
heartbeats per second without affecting other
namenode operations.

d) Scale

i. Namespace Limitations

HDFS is based on an architecture where the
namespace is decoupled from the data. The
namespace forms the file system metadata, which is
maintained by a dedicated server called the name-
node. The data itself resides on other servers called
data-nodes. The namespace consists of files and
directories. Files are divided into large (128 MB) blocks.
To provide data reliability, HDFS uses block replication.
Each block by default is replicated to three data-nodes.
Once the block is created its replication is maintained
by the system automatically. The block copies are
called replicas.

The name-node keeps the entire namespace in
RAM. This architecture has a natural limiting factor: the
memory size; that is, the number of namespace objects
(files and blocks) the single namespace server can
handle. Estimates show that the name-node uses less
than 200 bytes to store a single metadata object (a file
inode or a block). According to statistics on Y! clusters,
a file on average consists of 1.5 blocks. Which means
that it takes 600 bytes (1 file object + 2 block objects)
to store an average file in name-node’s RAM. For
example to store 100 million files (referencing 200

million blocks), a name-node should have at least 60
GB of RAM.We have learned by now that the name-
node can use 70% of its time to process external client
requests. Even with a handful of clients one can
saturate the name-node performance by letting the
clients send requests to the name-node with very high
frequency. The name-node most probably would
become unresponsive, potentially sending the whole
cluster into a tailspin because internal load requests do
not have priority over regular client requests. In practice,
the extreme load bursts are uncommon. Regular
Hadoop clusters run Map Reduce jobs, and jobs
perform conventional file reads or writes. To get or put
data from or to HDFS, a client first accesses the name-
node and receives block locations, and then directly
talks to data-nodes to transfer file data. Thus the
frequency of name-node requests is bound by the rate
of data transfer from data-nodes.

V. CONCLUSION

In this paper we have presented the overview of
Hadoop and several issues that affect the performance
of hadoop in heterogeneous clusters in cloud
environments. We have also proposed some guidelines
on how to overcome these issues to improve the
performance of hadoop. As hadoop is open source
implementation, we hope our work will provide a better
understanding of the performance challenges of
Hadoop in heterogeneous clusters, and pave the way
for further research in this area.

References Références Referencias
1. Cloud Computing on Wikipedia,

en.wikipedia.org/wiki/Cloudcomputing,
2. NIST Definition of Cloud Computing v15,

csrc.nist.gov/groups/SNS/cloud-
computing/clouddef- v15.doc

3. Qi Zhang, Lu Cheng, Raouf Boutaba Cloud
computing: state-of-the-art and research
challenges,J Internet Serv Appl (2010)

4. Hadoop Distributed File System,
hadoop.apache.org/hdfs

5. HadoopMapReduce,
hadoop.apache.org/mapreduce

6. Ghemawat S, Gobioff H, Leung S-T (2003) The
Google file system. In: Proc of SOSP, October
2003

7. Parallel virtual file system, version
2.http://www.pvfs2.org.

8. A scalable, high performance file system.
http://lustre.org.

9. http://en.wikipedia.org/wiki/Apache_Hadoop
10. http://www.cloudera.com/blog/2010/03/clouder

assupport- team-shares-some-basic-
hardwarerecommendations/

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

86

M
a
y

©2011 Global Journals Inc. (US)

11. M.Zaharia, A.Konwinski, A.Joseph, Y.zatz, and
I.Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI’08: 8th
USENIX Symposium on Operating Systems
Design and Implementation, October 2008

12. J. Dean and S. Ghemawat. Mapreduce:
Simplified data processing on large clusters.
OSDI ’04, pages 137–150, 2008.

13. Haiying Shen and Yingwu Zhu. A proactive
lowoverhead file replication scheme for
structured p2p content delivery networks. J.
Parallel Distrib. Comput., 69(5):429–440, 2009.

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

87

M
a
y

	11. Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing
	Authors
	I. INTRODUCTION
	II. RELATED TECHNOLOGIES
	III. HADOOP
	a) HDFS- Distributed file system over clouds
	b) Hadoop Mapreduce overview

	IV. PERFORMANCE ISSUES
	a) Cluster Hardware Configuration
	b) application logic related
	 i. Tune the number of map and reduce tasks appropriately
	

ii. Take Data locality into consideratio

	c) System Bottlenecks & Resource Under-utilization
	i. Replication
	ii. Block reports, heartbeats

	d) Scale
	i. Namespace Limitations

	V. CONCLUSION
	References Références Referencias

