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Abstract-
  

Nowadays most of the cloud applications process large amount of data to provide the 
desired results. Data volumes to be processed by cloud applications are growing much faster 
than computing power. This growth demands new strategies for processing and analyzing 
information. Dealing with large data volumes requires two things: 1) Inexpensive, reliable  
storagee 2) New tools for analyzing unstructured and structured data. Hadoop is a powerful 
open source software platform that addresses both of these problems. The current Hadoop 
implementation assumes that computing nodes in a cluster are homogeneous in nature. Hadoop 
lacks performance in heterogeneous clusters where the nodes have different computing 
capacity. In this paper we address the issues that affect the performance of hadoop in 
eterogeneous clusters and also provided some guidelines on how to overcome these 
bottlenecks.
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Performance Issues of Heterogeneous Hadoop 
Clusters in Cloud Computing 

B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy, L.S.S.Reddy

Abstract- Nowadays most of the cloud applications process 
large amount of data to provide the desired results. Data 
volumes to be processed by cloud applications are growing 
much faster than computing power. This growth demands 
new strategies for processing and analyzing information. 
Dealing with large data volumes requires two things: 1) 
Inexpensive, reliable storagee 2) New tools for analyzing 
unstructured and structured data. Hadoop is a powerful open 
source software platform that addresses both of these 
problems. The current Hadoop implementation assumes that 
computing nodes in a cluster are homogeneous in nature. 
Hadoop lacks performance in heterogeneous clusters where 
the nodes have different computing capacity. In this paper we 
address the issues that affect the performance of hadoop in 
eterogeneous clusters and also provided some guidelines on 
how to overcome these bottlenecks. 
Keywords: Cloud Computing, Hadoop, HDFS, 
Mapreduce 

I. INTRODUCTION 

loud computing[1] is a relatively new way of 
referring to the use of shared computing 
resources, and it is an alternative to having local 

servers handle applications. Cloud computing groups 
together large numbers of compute servers and other 
resources and typically offers their combined capacity 
on an on-demand, pay-percycle basis. The end users of 
a cloud computing network usually have no idea where 
the servers are physically located—they just spin up their 
application and start working. 

This flexibility is the key advantage to cloud 
computing, and what distinguishes it from other forms 
of grid or utility computing and software as a service 
(SaaS). The ability to launch new instances of an 
application with minimal labor and expense allows 
application providers to scale up and down rapidly, 
recover from a  failure, bring up development or test 
instances, roll out new versions to the customer base. 

The primary concept behind Cloud Computing 
isn't a brand new one. John McCarthy within the sixties 
imagined that processing amenities is going to be 
supplied to everyone just like a utility. The word  
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“cloud” has already been utilized in numerous 
contexts such as explaining big ATM systems within the 
1990s. Nevertheless, it had been following Google’s 
BOSS Eric Schmidt utilized the term to explain the 
company type of supplying providers over the Web 
within 2006. Since then, the term cloud computing has 
been used mainly as a marketing term in a variety of 
contexts to represent many different ideas. Certainly, the 
lack of a standard definition of cloud computing has 
generated not only market hypes, but also a fair amount 
of skepticism and confusion. For this reason, recently 
there has been work on standardizing the definition of 
cloud computing. As an example, the work in compared 
over 20 different definitions from a variety of sources to 
confirm a standard definition. In this paper, we adopt 
the definition of cloud computing provided by The 
National Institute of Standards and Technology (NIST), 
as it covers, in our opinion, all the essential aspects of 
cloud computing: 
NIST definition of cloud computing[2] Cloud computing 
is a model for enabling convenient, ondemand network 
access to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction. The main reason 
for the existence of different perceptions of cloud 
computing is that cloud computing, unlike other 
technical terms, is not a new technology, but rather a 
new operations model that brings together a set of 
existing technologies to run business in a differentway. 
Indeed, most of the technologies used by 
cloudcomputing, such as virtualization and utility-based 
pricing, are not new. Instead, cloud computing 
leverages these existing technologies to meet the 
technological and economic requirements of today’s 
demand for information technology. 

II. RELATED TECHNOLOGIES 
Cloud computing is often compared to the 

following technologies[3], each of which shares certain 
aspects with cloud computing: 
Grid Computing: Grid computing is a distributed 
computing paradigm that coordinates networked 
resources to achieve a common computational 
objective. The development of Grid computing was 
originally driven by scientific applications which are 
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usually computation-intensive. Cloud computing is 
similar to Grid computing in that it also employs 
distributed resources to achieve application-level 
objectives. However, cloud computing takes one step 
further by leveraging virtualization technologies at 
multiple levels (hardware and application platform) to 
realize resource sharing and dynamic resource 
provisioning. 
Utility Computing: Utility computing represents the 
model of providing resources on-demand and charging 
customers based on usage rather than a flat rate. Cloud 
computing can be perceived as a realization of utility 
computing. It adopts a utility-based pricing scheme 
entirely for economic reasons. With on-demand 
resource provisioning and utility based pricing, service 
providers can truly maximize resource utilization and 
minimize their operating costs. 

Virtualization: Virtualization is a technology that 
abstracts away the details of physical hardware and 
provides virtualized resources for high-level 
applications. A virtualized server is commonly called a 
virtual machine (VM). Virtualization forms the foundation 
of cloud computing, as it provides the capability of 
pooling computing resources from clusters of servers 
and dynamically assigning or reassigning virtual 
resources to applications on-demand. 

Autonomic Computing: Originally coined by 
IBM in 2001, autonomic computing aims at building 
computing systems capable of self-management, i.e. 
reacting to internal and external observations without 
human intervention. The goal of autonomic computing 
is to overcome the management complexity of todays 
computer systems. Although cloud computing exhibits 
certain autonomic features such as automatic resource 
provisioning, its objective is to lower the resource cost 
rather than to reduce system complexity. In summary, 
cloud computing leverages virtualization technology to 
achieve the goal of providing computing resources as a 
utility. It shares certain aspects with grid computing and 
autonomic computing but differs from them in other 
aspects. Therefore, it offers unique benefits and 
imposes distinctive challenges to meet its requirements. 

III. HADOOP 
Hadoop[9] is an open source implementation 

of the MapReduce parallel processing framework. 
Hadoop hides the details of parallel processing, 
including distributing data to processing nodes, 
restarting subtasks after a failure, and collecting the 
results of the computation. This framework allows 
developers to write relatively simple programs that focus 
on their computation problem, rather than on the nuts 
and bolts of parallelization. 
Hadoop Components 

• Distributed file system (HDFS) 
o Single namespace for entire cluster 

o Replicates data 3x for fault-tolerance 
• MapReduce framework 

o Executes user jobs specified as “map” 
and “reduce” functions 

o Manages work distribution & fault tolerance 

 

Fig 1: Typical Hadoop Cluster 

A hadoop Cluster may contain: 
• 40 nodes/rack, 1000-4000 nodes in cluster 
• 1 Gbps bandwidth within rack, 8 Gbps out of 

rack 
• Node specs (Yahoo terasort): 8 x 2 GHz cores, 

8 GB RAM, 4 disks (= 4 TB?) 
• Files split into 128MB blocks 
• Blocks replicated across several datanodes 

(usually 3) 
• Single namenode stores metadata (file names, 

block locations, etc) 
• Optimized for large files, sequential reads 

a) HDFS- Distributed file system over clouds 
Google File System (GFS) [6] is a proprietary 

distributed file system developed by Google and 
specially designed to provide efficient, reliable access 
to data using large clusters of commodity servers. Files 
are divided into chunks of 64 megabytes, and are 
usually appended to or read and only extremely rarely 
overwritten or shrunk. Compared with traditional file 
systems, GFS is designed and optimized to run on data 
centers to provide extremely high data throughputs, low 
latency and survive individual server failures. Inspired by 
GFS, the open source Hadoop Distributed File System 
(HDFS) [4] stores large files across multiple machines. 
It achieves reliability by replicating the data across 
multiple servers. Similarly to GFS, data is stored on 
multiple geo-diverse nodes. The file system is built from 
a cluster of data nodes, each of which serves  blocks of 
data over the network using a block protocol specific to 
HDFS. Data is also provided over HTTP, allowing 
access to all content from a web browser or other types 
of clients. Data nodes can talk to each other to 
rebalance data distribution, to move copies around, and 
to keep the replication of data high. 
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An advantage of using the HDFS is data 
awareness between the jobtracker and tasktracker. The 
jobtracker schedules map/reduce jobs to tasktrackers 
with an awareness of the data location. An example of 
this would be if node A contained data (x,y,z) and node 
B contained data (a,b,c). The jobtracker will schedule 
node B to perform map/reduce tasks on (a,b,c) and 
node A would be scheduled to perform map/reduce 
tasks on (x,y,z). This reduces the amount of traffic that 
goes over the network and prevents unnecessary data 
transfer. When Hadoop is used with other filesystems 
this advantage is not available. This can have a 
significant impact on the performance of job completion 
times, which has been demonstrated when running data 
intensive jobs [10] 

b) Hadoop Mapreduce overview 
MapReduce [5] is one of the most popular 

programming models designed for data centers. It was 
originally proposed by Google to handle large-scale 
web search applications and has been proved to be an 
effective programming model for developing data 
mining, machine learning and search applications in 
data centers. In particular, MapReduce can enhance the 
productivity for junior developers who lack the 
experience of distributed/parallel development. Hadoop 
has been successfully used by many companies 
including AOL, Amazon, Facebook, and New York 
Times for running their applications on clusters. For 
example, AOL used it for running an application that 
analyzes the behavioral pattern of their users so as to 
offer targeted services. 

Although Hadoop is successful in 
homogeneous computing environments, a performance 
study conducted by Matei Zaharia et al. [12] shows that 
MapReduce implemented in the standard distribution of 
Hadoop is unable to perform well in heterogeneous 
Cloud computing infrastructure such as Amazon EC2 . 
Experimental observations reveal that the homogeneity 
assumptions of MapReduce can cause wrong and often 
unnecessary. 

 

 

Fig 2: Hadoop Design 

speculative execution in heterogeneous 
environments, sometimes resulting in even worse 
performance than with speculation disabled. This 
evaluation and performance results of their enhanced 
scheduler in Hadoop demonstrate that Cloud execution 
management systems need to be designed to handle 
heterogeneity that is present in workloads, applications, 
and computing infrastructure. 

- Commodity machines (cheap, but unreliable) 
- Commodity network 
- Automatic fault-tolerance (fewer administrators) 
- Easy to use (fewer programmers) 

As shown in figure.2 a mapper will map the task 
to a datanode where the data is available. Task trackers 
will keep track of the work that is being carried by the  
datanodes. 

IV. PERFORMANCE ISSUES 
Several Key factors exist that affect the 

performance of Hadoop. 

a) Cluster Hardware Configuration 
Hadoop was designed based on a new 

approach to storing and processing complex data. 
Instead of relying on a Storage as Network for massive 
storage and reliability then moving it to a collection of 
blades for processing, Hadoop handles large data 
volumes and reliability in the software tier. Hadoop 
distributes data across a cluster of balanced machines 
and uses replication to ensure data reliability and fault 
tolerance. Because data is distributed on machines with 
compute power, processing can be sent directly to the 
machines storing the data. Since each machine in a 
Hadoop cluster both stores and processes data, they 
need to be configured to satisfy both data storage and 
processing requirements. Table:1 gives the summary of 
the parameters that affect the cluster performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table:1

 

Hardware Parameters that affect Hadoop 
Performance

 

There are four types of nodes in a basic 
Hadoop cluster.

 

A node referred as a machine 
performing a particular

 

task.

 

Most of the machines will 

Parameter Impact / Purpose

No.of Cores Processing Speed

RAM # trips to disk

Disks per node To support rapid scale up

Disk speed High throughput

Network Topology Communication overhead

function as both datanodes and tasktrackers. These 
nodes both store data and perform processing 
functions. Recommended specifications for 
datanodes/tasktrackers in a balanced Hadoop cluster 
are:

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing
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•

 

4 1TB hard disks in a JBOD (Just a Bunch Of

 

Disks) configuration

 

•

 

2 quad core CPUs, running at least 2-2.5GHz

 

•

 

16-24GBs of RAM (24-32GBs if you’re

 

considering HBase)

 

•

 

Gigabit Ethernet

 
 

The namenode is responsible for coordinating 
data

 

storage on the cluster and the jobtracker for

 

coordinating data processing. The last type of node is

 

the secondarynamenode, which can be colocated on 
the

 

namenode machine for small clusters, and will run 
on

 

the same hardware as the namenode for larger 
clusters.

 

We recommend our customers purchase 
hardened

 

machines for running the namenodes and 
jobtrackers,

 

with redundant power and enterprise-grade 
RAIDed

 

disks. Namenodes also require more RAM 
relative to

 

the number of data blocks in the cluster. A 
good rule of

 

thumb is to assume 1GB of namenode 
memory for

 

every one million blocks stored in the 
distributed file

 

system. With 100 datanodes

 

in a cluster, 
32GBs of

 

RAM on the namenode provides plenty of 
room to

 

grow. We also recommend having a standby 
machine to

 

replace the namenode or jobtracker, in the 
case when

 

one of these fails suddenly.

 

When you expect your Hadoop cluster to grow 
beyond

 

20 machines we recommend that the initial 
cluster be

 

configured as it were to span two racks, 
where each rack

 

has a top of rack gigabit switch, and 
those switches are

 

connected with a 10 GigE 
interconnect or core switch.

 

Having two logical racks

 

gives the operations team a

 

better understand of the 
network requirements for innerrack,

 

and cross-rack 
communication.

 

With a Hadoop cluster in place the team can 
start

 

identifying workloads and prepare to benchmark 
those

 

workloads to identify CPU and IO bottlenecks. 
After

 

some time benchmarking and monitoring, the 
team will

 

have a good understanding as to how 
additional

 

machines should be configured. It is common 
to have

 

heterogeneous Hadoop clusters especially as 
they grow

 

in size. Starting with a set of machines that 
are not

 

perfect for your workload will not be a waste.

 

Below is a list of various hardware configurations for

 

different workloads, including our earlier

 

recommendation[10]

 

•

 

Light Processing Configuration 
(1U/machine):Two quad core CPUs, 8GB 
memory, and 4 disk

 

drives (1TB or 2TB). Note 
that CPU-intensive work

 

such as natural 
language processing involves loading

 

large 

 

  

•

 

Balanced Compute Configuration

 

(1U/machine): Two quad core CPUs, 16 to 
24GB

 

memory, and 4 disk drives (1TB or 2TB) 
directly

 

attached using the motherboard 
controller. These are

 

often available as twins 
with two motherboards and 8

 

drives in a single 
2U cabinet.

 

•

 

Storage Heavy Configuration (2U/machine):

 

Two quad core CPUs, 16 to 24GB memory, and 
12

 

disk drives (1TB or 2TB). The

 

power 
consumption

 

for this type of machine starts 
around ~200W in idle

 

state and can go as high 
as ~350W when active.

 

•

 

·Compute Intensive Configuration 
(2U/machine): Two

 

quad core CPUs, 48-72GB 
memory, and 8 disk drives

 

(1TB or 2TB). These 
are often used when a combination

 

of large in-
memory models and heavy reference data

 

caching is required.

 

Purchasing appropriate hardware for a Hadoop 
cluster

 

requires benchmarking and careful planning to 
fully

 

understand the workload. Nevertheless, Hadoop 
clusters

 

are commonly heterogeneous and we 
recommend

 

deploying initial hardware with balanced 
specifications

 

when getting started.

 
b)

 

application logic related

 
i.

 

Tune the number of map and reduce tasks

 

appropriately

 
Tuning the number of map and reduce tasks for 

a job is

 

important and easy to overlook. Here are some 
rules of

 

thumb to set these parameters:

 

•

 

If each task takes less than 30-40 seconds,

 

reduce the number of tasks. The task setup and

 

scheduling overhead is a few seconds, so if 
tasks

 

finish very quickly, you’re wasting time 
while not

 

doing work. JVM reuse can also be 
enabled to solve

 

this problem.

 

•

 

If a job has more than 1TB of input, consider

 

increasing the block size of the input dataset to 
256M

 

or even 512M so that the number of tasks 
will be

 

smaller

 

•

 

So long as each task runs for at least 30-40

  

seconds, increase the number of mapper tasks 
to

 

some multiple of the number of mapper slots 
in the

 

cluster.

 

•

 

Don’t schedule too many reduce tasks –

 

for

 

most jobs, we recommend a number of reduce 
tasks

 

equal to or a bit less than the number of 
reduce slots

 

in the cluster.

 

  

models into RAM before processing data and
should be configured with 2GB RAM/core 
instead of 1GB RAM/core.

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing
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In a cluster where each node has a local disk, it 
is

 

efficient to move data processing operations to nodes

 

where application data are located. If data are not

 

locally available in a processing node, data have to be

 

migrated via network interconnects to the node that

 

performs the data processing operations. Migrating 
huge

 

amount of data leads to excessive network 
congestion,

 

which in turn can deteriorate system 
performance.

 

HDFS enables Hadoop MapReduce 
applications to

 

transfer processing operations toward 
nodes storing

 

application data to be processed by the 
operations. In a

 

heterogeneous cluster, the computing 
capacities of

 

nodes may vary significantly. A high-speed 
node can

 

finish processing data stored in a local disk of 
the node

 

faster than low-speed counterparts. After a 
fast node

 

complete the processing of its local input 
data, the node

 

must support load sharing by handling 
unprocessed data

 

located in one or more remote slow 
nodes. When the

 

amount of transferred data due to load 
sharing is very

 

large, the overhead of moving 
unprocessed data from

 

slow nodes to fast nodes 
becomes a critical issue

 

affecting Hadoop’s 
performance. To boost the

 

performance of Hadoop in 
heterogeneous clusters, we

 

aim to minimize data 
movement between slow and fast

 

nodes. This goal can 
be achieved by a data placement

 

scheme[11] that 
distribute and store data across multiple

 

heterogeneous 
nodes based on their computing

 

capacities. Data 
movement can be reduced if the

 

number of file 
fragments placed on the disk of each

 

node is 
proportional to the node’s data processing

 

speed.To 
achieve the best I/O performance, one may

 

make 
replicas of an input data file of a Hadoop

 

application in 
a way that each node in a Hadoop cluster

 

has a local 
copy of the input data. Such a data

  

replication scheme 
can, of course, minimize data

 

transfer among slow and 
fast nodes in the cluster during

 

the execution of the 
Hadoop application. The datareplication

 

approach has 
several limitations. First, it is

 

very expensive to create 
replicas in a large-scale cluster.

 

Second, distributing a 
large number of replicas canwasterfully consume 
scarce network bandwidth in

 

Hadoop clusters. Third, 
storing replicas requires an

 

unreasonably large amount 
of disk capacity, which in

  

turn increases the cost of 
Hadoop clusters. Although all

 

replicas can be produced 
before the execution of

 

Hadoop applications, significant 
efforts must be make to

 

reduce the overhead of 
generating replicas. If the

 

datareplication approach is 
employed in Hadoop, one

 

has to address the problem 
of high overhead for creating

 

file replicas by 
implementing a low-overhead filereplication

 

mechanism. 
For example, Shen and Zhu

 

developed a proactive 
lowoverhead file replication

 

scheme for structured peer-
to-peer networks [13]. Shen

 

and Zhu’s scheme may 
be incorporated to overcome this

 

limitation.

 

  

i.
 

Replication
 

HDFS is designed to run on highly unreliable 
hardware.

 
On Yahoo’s long-running clusters

 
we 

observe a node
 
failure rate of 2–3 per 1000 nodes a 

day. On new
 
(recently out of the factory) nodes, the rate 

is three
 
times higher. In order to provide data reliability 

HDFS
 

uses block replication. Initially, each block is 
replicated

 
by the client to three data-nodes. The block 

copies are
 
called replicas. A replication factor of three is 

the
 

default system parameter, which can either be
 

configured or specified per file at creation time.
 

Once the block is created, its replication is 
maintained

 
by the system automatically. The name-

node detect
 
sfailed data-nodes, or missing or corrupted 

individual
 

replicas, and restores their replication by 
directing the

 
copying of the remaining replicas to other 

nodes.
 

Replication is the simplest of known data-
recovery

 
techniques. Other techniques, such as 

redundant block
 

striping or erasure codes, are 
applicable and have been

 
used in other distributed file 

systems such as GFS,
 
PVFS and Lustre [6, 7, 8]. These 

approaches, although
 
more space efficient, also involve 

performance tradeoffs
 
for data recovery. With striping, 

depending on the
 
redundancy requirements, the system 

may need to read
 
two or more of the remaining data 

segments from the
 
nodes it has been striped to in order 

to reconstruct the
 

missing one. Replication always 
needs only one copy.

 
For HDFS, the most important 

advantage of the
 
replication technique is that it provides 

high availability
 
of data in high demand. This is actively 

exploited by the
 
MapReduce framework, as it increases 

replications of
 
configuration and job library files to avoid 

contention
 
during the job startup, when multiple tasks 

access the
 
same files simultaneously.

 

Each block replica on a data-node is 
represented by a

 
local (native file system) file. The size 

of this file equals
 
the actual length of the block and 

does not require extra
 

space to round it up to the 
maximum block size, as

 
traditional file systems do. 

Thus, if a block is half full it
 
needs only half of the space 

of the full block on the
 
local drive. A slight overhead is 

added, since HDFS also
 

stores a second, smaller 
metadata file for each block

 
replica, which contains

 
the 

checksums for the block
 
data.

 

ii.
 

Block reports, heartbeats
 

 

The name-node maintains a list of registered 
data-nodes and blocks belonging to each data-node. A 
data-node identifies block replicas in its possession to 
the namenode by sending a block report. A block report 
contains block ID, length, and the generation stamp for 
each block replica. The first block report is sent 
immediately after the data-node registration. It reveals 
block locations, which are not maintained in the 
namespace image or in the journal on the name-node. 

c) System Bottlenecks & Resource Under-utilizationii. Take Data locality into consideration

Performance Issues of Heterogeneous Hadoop Clusters in Cloud Computing
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Subsequently, block reports are sent periodically every 
hour by default and serve as a sanity check, providing 
that the namenode has an up-to-date view of block 
replica distribution on the cluster. During normal 
operation, data-nodes periodically send heartbeats to 
the name-node to indicate that the data-node is alive. 
The default heartbeat interval is three seconds. If the 
name-node does not receive a heartbeat from a data-
node in 10 minutes, it pronounces the data-node dead 
and schedules its blocks for replication on other nodes. 

Heartbeats also carry information about total 
and used disk capacity and the number of data 
transfers currently performed by the node, which plays 
an important role in the name-node’s space and load-
balancing decisions. The communication on HDFS 
clusters is organized in such a way that the name-node 
does not call data-nodes directly. It uses heartbeats to 
reply to the data nodes with important instructions. The 
instructions include commands to: 

• Replicate blocks to other nodes. Remove local 
block replicas 

• Re-register or shut down the node 
• Send an urgent block report 

These commands are important for maintaining 
the overall system integrity; it is therefore imperative to 
keep heartbeats frequent even on big clusters. The 
name-node is optimized to process thousands of 
heartbeats per second without affecting other 
namenode operations. 

d) Scale 

i. Namespace Limitations 

HDFS is based on an architecture where the 
namespace is decoupled from the data. The 
namespace forms the file system metadata, which is 
maintained by a dedicated server called the name-
node. The data itself resides on other servers called 
data-nodes. The namespace consists of files and 
directories. Files are divided into large (128 MB) blocks. 
To provide data reliability, HDFS uses block replication. 
Each block by default is replicated to three data-nodes. 
Once the block is created its replication is maintained 
by the system automatically. The block copies are 
called replicas. 

The name-node keeps the entire namespace in 
RAM. This architecture has a natural limiting factor: the 
memory size; that is, the number of namespace objects 
(files and blocks) the single namespace server can 
handle. Estimates show that the name-node uses less 
than 200 bytes to store a single metadata object (a file 
inode or a block). According to statistics on Y! clusters, 
a file on average consists of 1.5 blocks. Which means 
that it takes 600 bytes (1 file object + 2 block objects) 
to store an average file in name-node’s RAM. For 
example to store 100 million files (referencing 200 

million blocks), a name-node should have at least 60 
GB of RAM.We have learned by now that the name-
node can use 70% of its time to process external client 
requests. Even with a handful of clients one can 
saturate the name-node performance by letting the 
clients send requests to the name-node with very high 
frequency. The name-node most probably would 
become unresponsive, potentially sending the whole 
cluster into a tailspin because internal load requests do 
not have priority over regular client requests. In practice, 
the extreme load bursts are uncommon. Regular 
Hadoop clusters run Map Reduce jobs, and jobs 
perform conventional file reads or writes. To get or put 
data from or to HDFS, a client first accesses the name-
node and receives block locations, and then directly 
talks to data-nodes to transfer file data. Thus the 
frequency of name-node requests is bound by the rate 
of data transfer from data-nodes. 

V. CONCLUSION 

In this paper we have presented the overview of 
Hadoop and several issues that affect the performance 
of hadoop in heterogeneous clusters in cloud 
environments. We have also proposed some guidelines 
on how to overcome these issues to improve the 
performance of hadoop. As hadoop is open source 
implementation, we hope our work will provide a better 
understanding of the performance challenges of 
Hadoop in heterogeneous clusters, and pave the way 
for further research in this area. 
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