
FMEA and Fault Tree based Software Safety Analysis of a1

Railroad Crossing Critical System2

Ben Swarup Medikonda1, P. Seetha Ramaiah2 and Anu A. Gokhale33

1 Department of Computer Science and Systems Engineering Department of Technology4

Andhra University5

Received: 29 March 2011 Accepted: 24 April 2011 Published: 6 May 20116

7

Abstract8

Software for safety-critical systems must deal with the hazards identified by safety analysis in9

order to make the system safe, risk-free and fail-safe. Certain faults in critical systems can10

result in catastrophic consequences such as death, injury or environmental harm. The focus of11

this paper is an approach to software safety analysis based on a combination of two existing12

fault removal techniques. A comprehensive software safety analysis involving a combination of13

Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) is conducted on14

the software functions of the critical system to identify potentially hazardous software faults.15

A prototype safety-critical system - Railroad Crossing Control System (RCCS), incorporating16

a microcontroller and software to operate the train on a track circuit is described.17

18

Index terms— Software safety, safety-critical systems, software faults, software safety analysis.19
Introduction safety-critical system is one that has the potential to cause accidents. Software is hazardous if it20

can cause a hazard i.e. cause other components to become hazardous or if it is used to control a hazard. Software21
is deemed safe if it is impossible or at least highly unlikely that the software could ever produce an output that22
would cause a catastrophic event for the system that the software controls. Examples of catastrophic events23
include loss of physical property, physical harm, and loss-of-life. Software engineering of a safety-critical system24
requires a clear understanding of the software’s role in, and interactions with, the system [1,2]. a) Software-25
induced failures in real-life Computers are increasingly being introduced into safety-critical systems and, as a26
consequence, have been involved in accidents. Some well known incidents are the massive overdoses given by the27
computer-controlled radiation therapy machine Therac-25 [3] with resultant death and serious injuries, during the28
mid-eighties; European Space Agency’s Ariane 5 rocket explosion [4] during lift-off in June 1996, and SeaLaunch29
rocket failure [5] during lift off in March 2000. Recent examples include the following: on 7 October 2008, Qantas30
Flight 72 from Singapore to Perth made an emergency landing following an inflight accident featuring a pair of31
sudden uncommanded pitch-down manoeuvres that resulted in serious injuries to many of the occupants. The32
Australian Transport Safety Bureau (ATSB) said that incorrect information from the faulty computer triggered33
a series of alarms and then prompted the Airbus A330’s flight control computers to put the jet into a 197-metre34
nosedive ??6].35

All these examples indicate that accidents still take place despite all the measures taken to prevent them.36
Since complete elimination of unforeseen hazards is not always possible, what we need is a fail-safe design which,37
in the event of a failure, allows the system to fail in a safe way, causing no harm or at least the minimum level of38
danger. To meet the fail-safe requirements, rigorous safety analysis is required to identify potential hazards and39
take corrective measures during the entire system development life cycle.40

There are many software fault removal techniques in literature. The most frequent classification is by41
differentiating between static and dynamic techniques [8]. Different authors focus on probabilistic based42
approaches (like the Markov modeling method), or statistical, approaches like statistical testing, software43
reliability models [9]. However most of the fault removal techniques are non-probabilistic. In some standards,44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

6 SAFETY ANALYSIS OF RCCS

static techniques require formal methods and proofs based on mathematical demonstrations. Other standards45
and literature classify these techniques in functional and logical terms [10] or by just mentioning functional testing46
like in [11] or structural testing, like in [12].47

None of the fault removal techniques like algorithm analysis, control flow analysis, Petri-Net analysis, reliability48
block diagrams, sneak circuit analysis, event tree analysis, FMEA and FTA can be considered apt and complete49
in all respects, when used in isolation. A way out of this is to analyse how to combine individual techniques so50
that the fault removal process is significantly improved. One of the most effective combinations is FMEA+FTA.51
The literature [9,10] already mentions that FTA technique can be associated effectively with other practices52
like FMEA. Their greatest advantage is in combination with each other. FMEA concentrates in identifying53
the severity and criticality of failures and FTA in identifying the causes of faults. FMEA technique is a fully54
bottom-up approach A and FTA has a fully complementary top-down approach. Moreover, these two techniques55
are directly compatible with system level techniques.56

In this paper, we propose a system-level approach to software safety analysis for critical systems that combines57
two existing fault removal techniques -FMEA and FTA to identify and eventually remove software faults at58
successive software development phases. We have applied our safety approach to a model railroad crossing59
control system to validate its effectiveness.60

We also compare how the safetyspecific software development of a critical system is distinct from the traditional61
non-safety-specific software development.62

The rest of this paper is organized as follows: section 2 describes the Railroad Crossing Control System63
(RCCS). Section 3 applies the safety analysis using SFMEA and SFTA techniques to RCCS. Section 4 addresses64
the hardware and software development issues of RCCS. Section 5 presents an analysis of the experimental results65
and section 6 concludes the discussion.66

1 II.67

2 Railroad Crossing Control System (RCCS)68

Crossing gates on a full-size railroad are controlled by a complex control system that causes the gates to be69
lowered to prevent access to the crossing shortly before a train arrives and to be raised to allow access to resume70
after the train has departed. RCCS is a prototype, real-time, safety-critical railroad crossing control system71
composed of several software-controlled hardware components.72

3 a) RCCS Interfaces73

The main interfaces of the microcontroller, which hosts and runs the embedded software, are shown below in74
Figure ??. The main inputs to the microcontroller are signals from the 7 sensors on the track, the 2 gates at the75
railroad intersection, the trackchange lever, and the 3 signal lights. The main outputs of the micro-controller are76
control signals for the train, Gate1 Gate 2, track change lever, signal lights, LCD display. The values of these77
output signals are determined using different algorithms combining the input signals that are constantly updated78
and read by the software.79

4 Figure 1. External interfaces of RCCS microcontroller80

The main functionality of RCCS is listed in Table ??.81

5 Table 1. RCCS System Functions -Key Areas82

6 Safety Analysis of RCCS83

The safety analysis of RCCS software functions takes place in three sequential steps.84
? Software Failure Mode and Effects Analysis (SFMEA) This analysis is performed in order to determine85

the top events for lower level analysis. SFMEA analysis will be performed following the list of failure types.86
SFMEA will be used to identify critical functions based on the applicable software specification. The severity87
consequences of a failure , as well as the observability requirements and the effects of the failure will be used88
to define the criticality level of the function and thus whether this function will be considered in further deeper89
criticality analysis. The formulation of recommendations of fault related techniques that may help reduce failure90
criticality is included as part of this analysis step. ? Software Fault Tree Analysis (SFTA) After determining the91
top-level failure events, a complete Software Fault Tree Analysis shall be performed to analyse the faults that can92
cause those failures. This is a top down technique that determines the origin of the critical failure. The top-down93
technique is applied following the information provided at the design level, descending to the code modules .94
SFTA will be used to confirm the criticality of the functions (as output from SFMEA) when analyzing the design95
and code (from the software requirements phase, through the design and implementation phases) and to help:96

-Reduce the criticality level of the functions due to software design and / or coding fault-related techniques97
used (or recommended to be used) -Detail the test-case definition for the set of validation test cases to be98
executed.99

2

7 ? Evaluation of Results100

The evaluation of the results will be performed after the above two steps in order to highlight the potential101
discrepancies and prepare the recommended corrective measures.102

8 a) SFMEA Analysis of RCCS103

The SFMEA, a sample of which is shown in the Table 2 below presents some software failure modes defined104
for RCCS. The origin and effects of each failure mode are analyzed identifying the top level events for further105
refinement, when the consequence of this failure could be catastrophic for this system. Three top events were106
singled out for further analysis of failure mode Gate not closed as train is passing through railroad intersection.107

9 b) SFTA Analysis of RCCS108

The fault tree is a graphical representation of the conditions or other factors causing or contributing to the109
occurrence of the so-called top event, which normally is identified as an undesirable event. A systematic110
construction of the fault tree consists in defining the immediate cause of the top event. These immediate cause111
events are the immediate cause or immediate mechanism for the top event to occur. From here, the immediate112
events should be considered as sub-top events and the same process should be applied to them. All applicable113
fault types should be considered for applicability as the cause of a higher level fault. This process proceeds down114
the tree until the limit of resolution of tree is reached, thereby reaching the basic events, which are the terminal115
nodes of the tree. Figure ?? shows the sample fault tree for the top event Gate Not Closed at the railroad116
intersection.117

10 c) Recommendations to Design and Coding118

From the safety analysis we have conducted, the major critical events that might occur and the corresponding119
safety properties the RCCS software has to implement, and which are controlled by the embedded software in120
the microcontroller are listed below.121

11 Figure 2. Software Fault Tree sample for top event122

Gate Not Closed at the railroad intersection123
? The software shall make sure that the 2 gates on either side of the railroad intersection operate correctly -ie.124

opening and closing the gates, at the proper time. The consequences of failure to do so are very severe, since it125
can result in the train and road traffic collision, leading to death. ? The software shall make sure that the train126
changes its path from the outer track circuit to the inner track circuit by correctly operating the track change127
lever at the right time. Failure to do so can have severe consequences leading to collision with another train128
that may be stationary on the outer track. ? The software shall prevent the running operation of the train if it129
detects that the gates at the intersection have not been fully closed. ? The software shall prevent the running130
operation of the train, if the train engine detects any physical obstacle just ahead of it, either at the mid-section131
of the railroad intersection or at any point on the track path, just ahead of the engine. Failure to do so can lead132
to collisions.133

? The software shall the running operation of the train if a Red signal is displayed in the Signal Light alongside134
the track. Failure to do so can lead to accidents. ? The software shall prevent the running operation of the135
train if the train engine is not able to confirm that a green signal has been given to it, to resume running after136
a previous red signal to stop running. ? The software shall bring the running train to a halt at the location137
designated as railway station platform, on the track, after every cycle of operation around the track. Failure to138
do so can cause collision with another train that is passing just ahead on the same track. IV.139

12 RCCS Development140

RCCS hardware and software development is described in this section. Train: The train is powered by a power141
supply relay.142

When the power is initially switched on, the train begins movement along the track when the metallic wheels143
of the train receive power. The train comes to a halt at the position where the power to the tracks is switched144
off.145

Sensors: These are used to detect the location of the train on the tracks. Altogether RCCS employs seven146
sensors. Two pairs of sensors detect the train position before and after the gates. A set of two sensors relate to147
track change where the track splits into two directions. One sensor gives the train position with reference to the148
platform, which is the starting point of the train movement. Information from each of the sensors is passed to149
controller. The safety-specific version of RCCS controller program used the same techniques as the non-safety150
version with the addition of the following safety-specific analysis: preliminary hazard analysis, and design-level151
hazard analysis, FMEA and FTA analyses. These techniques target the specification and designs. The goal here152
is to determine if the inclusion of these methods reduces the number of latent safety-critical faults relative to153
non-safety specific methods.154

3

14 CONCLUSION

The software safety-based development involves preliminary software hazard analysis, which among other155
things identifies software hazards, ie. the states in the software that can lead to an accident. Without identifying156
the hazards, we have little assurance that the hazards will not occur. Therefore, preliminary software hazard157
analysis is an important first step in verifying safety-critical software systems. Once the hazard list exists, the158
verification process can continue by applying several static and dynamic verification techniques. Static techniques159
include failure modes and effects analysis (FMEA), and fault-tree analysis (FTA).160

After static verification, software engineers must dynamically verify the software’s safety (ie. safety testing).161
Safety-critical testing of RCCS can be done by separating the code into two risk groups. Group one includes162
hazards that are catastrophic or critical. Group two includes hazards that are marginal or negligible. More163
testing effort should be spent on those code sections dealing with hazards related to group one.164

V.165

13 Experimental Results & Analysis166

In view of the comprehensive safety analysis, and specification and implementation the safety properties during167
RCCS design and development, the expected result was that safety-specific RCCS development would produce a168
software system with fewer latent safety-critical faults than traditional nonsafety specific techniques alone. This169
is due to the belief that the safety-specific techniques will prevent safetycritical faults in the specifications and170
designs that the traditional techniques have a tendency to miss. Figure 4 shows the RCCS laboratory prototype171
developed in the lab.172

During the operation of RCCS, the safetyspecific development version of RCCS clearly demonstrated the173
fulfillment of the safety properties. For example, if the gate at the railroad intersection is not closed at all, or174
partially closed, as the train is about to pass through the intersection, the controller software makes the train175
come to a halt. Only after confirming that the gate is fully closed does the software allow the train to pass176
through the railroad intersection. On the other hand, in the non-safety version of RCCS, the controller software177
allows the train to pass through the intersection without confirming whether the gate is actually closed or not,178
assuming that the gate function will operate without failure, leading to a major accident.179

Likewise, in the safety-version of RCCS, when the train is changing its track route from the outer loop to180
the inner loop, the software first confirms whether the track change lever is fully activated and operational. If181
the track lever is stuck halfway through and the rails connection to the inner loop is incomplete, the software182
makes the train come to a halt. In the case of the nonsafety version, the software allows the train to change183
route without confirming the health status of the track lever, leading to an accident. The safety version also184
demonstrated a preliminary check of the internal health of all the RCCS subsystems -the gates mechanism, track185
lever operation, sensors, signal light LEDs, displaying the health status on the LCD display panel.186

14 Conclusion187

This paper discussed a FMEA and Fault Tree based approach to software safety analysis for critical systems. A188
comprehensive software safety analysis involving a combination of FMEA and FTA techniques was conducted on189
the software functions of the critical system to identify potentially hazardous software faults. The safety properties190
of the prototype railroad crossing control system were identified as part of the safetycritical requirements. These191
safety requirements were incorporated in the design and development of a railroad crossing control system (RCCS).192
We also briefly compared safety-specific and non-safety specific techniques at developing RCCS. The non-safety193
version of RCCS broadly focused on achieving the functional behavior of the system. The safety-specific version194
clearly demonstrated that the software safety properties identified in RCCS specification were fully met in the195
working system. 1 2 3 4196

1May©2011 Global Journals Inc. (US)
2May©2011 Global Journals Inc. (US)
3May©2011 Global Journals Inc. (US)
4May©2011 Global Journals Inc. (US)

4

Figure 1:

Figure 2:

Figure 3:

3

Figure 4: Figure 3 .

4

Figure 5: Figure 4 .

5

14 CONCLUSION

2

Sever- Prevention

Failure Possible Effect ity
of

And

Mode Causes risk Compensati
on

a) sensor not Train
Gate not detected by s/w collision Software first
closed b) gate motor with checks the
as train mechanism is passing working
is defective road Criticalstatus of
passing c) s/w gives traffic gates each
through wrong leading to time the train

command accidents is about to
d) s/w gives cross the
right command gates
at wrong time

Figure 6: Table 2 .

Figure 7: ?

6

[Leveson and Turner (1987)] ‘An investigation of the Therac-25 accidents’. N G Leveson , C S Turner . IEEE197
Computer March 1987. 26 (7) p. .198

[DO-178B/ED-12B Software Considerations in Airborne Systems and Equipment Certification (1992)] DO-199
178B/ED-12B Software Considerations in Airborne Systems and Equipment Certification, (RTCA,200
EUROCAE) December 1992.201

[EN50128 Railway Applications: Software for Railway Protection and Control Systems. CENELEC] EN50128202
Railway Applications: Software for Railway Protection and Control Systems. CENELEC,203

[Gray (2000)] Dale M Gray . www.asi.org Frontier Status Report #203, 19 May 2000.204

[Herman ()] Debra S Herman . Software Safety and Reliability Basics:”, (ch.2), Software Safety and Reliability:205
Techniques, Approaches, and Standards of, 2000. Key Industrial Sectors Wiley-IEEE Computer Society Press.206

[Ieee Std] Ieee Std . Standard Glossary of Software Engineering Terminology, 610 p. .207

[Ieee Std 1012 ()] Ieee Std 1012 . IEEE Standard for Software Verification and Validation Plans, 1986. The208
Institute of Electrical and Electronics Engineering, Inc. USA209

[N ()] Leveson Safeware: System Safety and Computers, N . 1995. Addison-Wesley.210

[Knight ()] ‘Safety Critical Systems: Challenges and Directions’. John C Knight . Proceedings of the 24 th211
International Conference on Software Engineering (ICSE), (the 24 th International Conference on Software212
Engineering (ICSE)Orlando, Florida) 2002.213

[Lutz ()] ‘Software Engineering for Safety: a Roadmap’. Robyn R Lutz . Proceedings of the Conference on The214
Future of Software Engineering, (the Conference on The Future of Software EngineeringLimerick, Ireland)215
June 04-11, 2000. p. .216

[Tribble ()] ‘Software Safety Analysis of a Flight Guidance System’. Alan C Tribble . Proceedings of the217
21st Digital Avionics Systems Conference (DASC’02), (the 21st Digital Avionics Systems Conference218
(DASC’02)Irvine, California) Oct. 27-31, 2002.219

[Gleick (1996)] The New York Times Magazine, James Gleick . 1st December 1996.220

7

www.asi.org

