
© 2011 Smriti Agrawal, Rama Shankar, Ranvijay. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 10 Version 1.0 May 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN: 0975-4172 & Print ISSN: 0975-4350

A Three Phase Scheduling for System Energy Minimization of
Weakly Hard Real Time Systems

By Smriti Agrawal, Rama Shankar, Ranvijay

Abstract- This paper aims to present a three phase scheduling algorithm that offers lesser energy
consumption for weakly hard real time systems modeled with (𝕞𝕞𝕞𝕞, 𝕜𝕜𝕜𝕜) constraint. The weakly
hard real time system consists of a DVS processor (frequency dependent) and peripheral
devices (frequency independent) components. The energy minimization is done in three phase
taking into account the preemption overhead. The first phase partitions the jobs into mandatory
and optional while assigning processor speed ensuring the feasibility of the task set. The second
phase proposes a greedy based preemption control technique which reduces the energy
consumption due to preemption. While the third phase refines the feasible schedule received
from the second phase by two methods, namely speed adjustment and delayed start. The
proposed speed adjustment assigns optimal speed to each job whereas fragmented idle slots
are accumulated to provide better opportunity to switch the component into sleep state by
delayed start strategy as a result leads to energy saving. The simulation results and examples
illustrate that our approach can effectively reduce the overall system energy consumption
(especially for systems with higher utilizations) while guaranteeing the (𝕞𝕞𝕞𝕞, 𝕜𝕜𝕜𝕜) at the same
time.

Keywords:

GJCST Classification: J.7

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

 Strictly as per the compliance and regulations of:

Dynamic power down, Dynamic voltage scaling, () model, Preemption 𝕞𝕞𝕞𝕞, 𝕜𝕜𝕜𝕜
Control, Scheduling, W eakly hard real time system.

©2011 Global Journals Inc. (US)

A Three Phase Scheduling for System Energy
Minimization of Weakly Hard Real Time Systems

Smriti Agrawal , Rama Shankar , Ranvijay

Abstract- This paper aims to present a three phase scheduling
algorithm that offers lesser energy consumption for weakly
hard real time systems modeled with (𝕞𝕞,𝕜𝕜) constraint. The
weakly hard real time system consists of a DVS processor
(frequency dependent) and peripheral devices (frequency
independent) components. The energy minimization is done in
three phase taking into account the preemption overhead. The
first phase partitions the jobs into mandatory and optional
while assigning processor speed ensuring the feasibility of the
task set. The second phase proposes a greedy based
preemption control technique which reduces the energy
consumption due to preemption. While the third phase refines
the feasible schedule received from the second phase by two
methods, namely speed adjustment and delayed start. The
proposed speed adjustment assigns optimal speed to each
job whereas fragmented idle slots are accumulated to provide
better opportunity to switch the component into sleep state by
delayed start strategy as a result leads to energy saving. The
simulation results and examples illustrate that our approach
can effectively reduce the overall system energy consumption
(especially for systems with higher utilizations) while
guaranteeing the (𝕞𝕞,𝕜𝕜) at the same time.
Keywords: Dynamic power down, Dynamic voltage
scaling, (𝕞𝕞,𝕜𝕜) model, Preemption Control, Scheduling,
Weakly hard real time system.

I. Introduction
eal time applications are usually composed of set
of tasks that interact with each other by
exchanging messages. These tasks and their

corresponding messages are often invoked repeatedly
and are required to complete their services by
respective deadlines. Examples of such applications
include process control automated manufacturing
system and delivery of audio/video frames in multimedia
[1]. In process control automated manufacturing system
finishing beyond deadline can have a catastrophic effect
whereas it may be annoying but acceptable without
much loss in case of multimedia applications. An
application with catastrophic effect is defined as hard
real time whereas degraded performance application is
soft real time in nature. Besides these hard and soft
deadlines, multimedia application such as video
conferencing is being referred to as weakly hard real
time where missing of some tasks to complete by

frame/sec from which at least 24 frames/sec are needed
to visualize the movement of the image [17]. When
transmitting such frames if sufficient processing power
and network bandwidth are available then a high quality
video

(receiving 30 frames/sec at destination) can be
projected whereas degraded but acceptable quality of
image is received. In case at least 24 frames/sec reach
at the destination within deadline then desired quality is
received. For weakly hard real time systems the
assurance of minimum acceptable quality result is
attained by imprecise concept [17, 18] or by (𝕞𝕞,𝕜𝕜)

model [11]. In imprecise concept a frame has to be
received at destination (may be full or portion of it) while
a partially received frame is considered as dropped
frame in (𝕞𝕞,𝕜𝕜). That is, all frames are required to be
received for imprecise computation whereas certain
frames may be dropped to maintain the minimum
quality in (𝕞𝕞,𝕜𝕜)

constraints. To ensure a deterministic
quality of service (QoS) to such systems, Hamdaoui and
Ramanathan [1] used the (𝕞𝕞,𝕜𝕜)

model in which, out of
𝕜𝕜

consecutive task instances any 𝕞𝕞

instances must
meet their respective deadlines. The (𝕞𝕞,𝕜𝕜)

model
scatters the effect of 𝕞𝕞

deadline misses over a window
of 𝕜𝕜

which is different from accepting low miss rate in
which a series of frames may be lost in a burst load
leading to intolerant behavior in terms of missing a
portion. Besides guaranteeing for QoS in terms of
(𝕞𝕞,𝕜𝕜)

designer of real time system has to take care of
minimization of energy especially for portable devices.

Energy-aware computing has been realized as
one of the key area for research in real time systems
[20]. Energy-driven scheduling algorithms have been
developed to reduce system’s energy consumption
while satisfying the timing constraints [2, 3, 4, 5, 6, 19,
20, 21, 22, 25] are applicable for system having
frequency dependent component (speed of the system
varies with variation in its operating frequency) as
resource. They will be able to reduce energy for system
having frequency dependent components only. Besides
frequency dependent component many systems have
frequency independent components such as memory
where above energy-driven voltage scheduling
algorithms are inadequate.

For the systems having frequency dependent
component energy consumption decreases with

R

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

11

M
a
y

α Ω β

digitized motion video; a source (e.g., a video camera)
generates a stream of video frames at a rate of say 30

About α- Department of IT, JB Institute of Engineering and Technolo-
-gy, Hyderabad, India.
About Ω- Department of CSE, Motilal Nehru National Institute of Tech-
-nology, Allahabad India.
About β-Department of CSE, Motilal Nehru National Insti-
-tute of Technology, Allahabad India.

deadlines degrade the quality of result however, result is
acceptable. For example, in real time transmission of

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

because on reducing the frequency, components which
are frequency independent may be forced to be active
for longer duration leading to more energy consumption.
Authors [7, 8, 9, 10] revealed that the frequency
dependent component (processor core) consumes
around 30% of total energy while frequency independent
(memory and peripherals devices) account for the
remaining 70% of energy consumption. Thus, the energy
consumption of the frequency independent components
plays a crucial role

in overall energy consumption of a
system. Group of researcher [6, 28, 29, 32] are focused
for minimization of system energy (energy required by
frequency dependent and independent component)
rather than minimization of processor energy only. We
use the term frequency dependent component to refer a
processor and frequency independent for memory or
peripheral devices. The three common techniques used
for minimization of system energy are dynamic voltage
scaling (DVS), dynamic power down (DPD) and
Preemption

control (PC) which will be discussed in the
following subsection.

Dynamic Voltage Scaling (DVS),

is based on
adjusting the processor voltage and frequency on-the-fly
[12, 13] as energy requirement depends on operating
frequency as well as voltage. The DVS

attempts to
reduce the processor speed to the extent it is possible,
to obtain reduction in energy consumption. The speed
of a frequency dependent component is said to be
reduced if it is either operating at lower voltage or
frequency. The task execution time increases with the
reduction in processor speed leading to the following
consequences:

•

a release may miss its deadline while it is
feasible at higher speed.

•

the longer execution time will be able to
decrease the energy consumption of the
processor whereas the system energy may be
increased

•

frequency independent components remain
active for longer time and increase the energy
consumption.

•

longer execution time implies more losses in
energy due to leakage current [44].

However, the task execution times do not
always scale linearly with the processor speed [13, 14,
15, 16, 23, 26] because system may have some
components (memory and peripheral devices) which do
not scale with the operating frequency. Thus, DVS may
not be efficient (further reduction in the speed would
increase the energy consumption) when the system
energy is considered. To solve this problem, authors
[27, 29, 30, 31] suggested a lower bound (critical speed
which balanced the energy consumption between the
processor and peripheral devices to minimize the

negative impact of the DVS. Niu and Quan [11] used a
combined static/dynamic partitioning strategy for (𝕞𝕞,𝕜𝕜)

model to reduce the processor energy and are not
efficient for system energy. Beside the DVS energy
minimization approach authors [35, 36] suggested to
switch off the system (power down) rather than scale
down the speed to reduce the energy requirement which
is discussed briefly in next subsection.

Dynamic Power Down (DPD)

is switching to

sleep mode (least power mode) of the unused
components since the workload is not constant at all
times. Although leaving a component (frequency
dependent or independent) in idle/active state
consumes power but switching to sleep mode too often
may also be counter productive due to heavy context
switching overheads. Thus, the DPD technique strives to
balance the active and the sleeping time of the
components.

Authors [32, 34, 35] used DPD to switch the
processor and the peripheral devices into sleep mode
based on threshold (minimum time for which the
component may sleep for positive energy saving) value
to save energy for both hard and soft real time systems.
The Niu and Quan [36] proposed a DPD based
scheduling method to reduce the system energy
consumption for weakly hard real-time systems with
(𝕞𝕞,𝕜𝕜)

constraints. The reduction in energy

consumption achieved by the DPD technique would
increase with the enlargement of the idle slot length. The
increment in the length of the idle slot can be achieved

by the preemption control technique which is discussed
in the following sub-section.

Preemption Control (PC)

is allowing a lower

priority job to continue execution even when a higher
priority job is ready such that none miss their deadline.
When a job starts execution on the processor then the
associated devices are switched to active state in which
they remain till it completes. Thus, if a lower priority job
is preempted by the higher priority job then the
associated components remain active and consume
energy for the time for which the job is preempted. This
extra consumption in the energy can be reduced by
delaying the higher priority job if possible and
completing the lower priority job in the meanwhile (laxity
of the higher one). Moreover, each time a job is
preempted the context of the job needs to be saved and
to be restored when it resumes. This context saving and
retrieval would incur an overhead both in terms of time
and energy. Thus, reducing number of preemptions
reduces the response time of the job and undue energy
dissipations due to preemption overhead, longer
response time. Agrawal et. al. [29] proposed a
preemption control technique where the lower priority
job is forced to execute at higher speed levels and
complete before the arrival of a higher priority one. The
authors themselves say that such a policy may not
always lead to energy saving performance.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

12

M
a
y

being reduced for the system having both frequency
dependent as well as independent components. This is

system energy) on the processor speed to avoid the reduction in operating frequency and vice-versa. The
energy consumption may increase while frequency is

©2011 Global Journals Inc. (US)

It is observed if only DPD is applied on a
system then based on the threshold the components
would be allowed to switch into sleep state and gain the
energy reduction. Although, increasing the length or
accumulating the idle slots further reduces the energy
by DPD; DPD technique itself does not suggest any
method to do so. While DVS would lower the assigned
speed to each job and increase its execution time which
in turn increases its response time. An increment in
response time of a job not only increases the energy
consumption by the associated components which
remain active for longer time but also due to additional
preemption which may occur. On the other hand,
preemption control at the assigned speed may not be
able to reduce the response time and/or number of
preemptions. To address the shortcoming of each (DVS,
DPD and PC) and to enhance the overall reduction in
system energy consumption we suggest a judicious
combination of all the above techniques.

The length of the idle slot can be enhanced by
selecting better speed level for DVS (suggested in third
phase) or reducing the response time by PC (suggested
in second phase) or delaying the execution of a job
(suggested in third phase). The priorities are assigned
based on the earliest deadline first (EDF) policy in which
the job whose absolute deadline is lower has higher

priority. The number of preemptions for different jobs of
a task may vary as the earliest deadline first scheduling
is dynamic at task level and arrival of mandatory jobs
depends on the partitioning strategy. Thus, a job level
DVS view would increase its efficiency (suggested in
third phase). On the other hand, increasing the speed of
few jobs (selected based on the greedy technique
suggested in phase-2) could reduce energy consumbed
by lower priority job with longer execution as well as
preemption overhead. Recently, two groups of
researcher Agrawal et. al. [29] and Niu and Quan [37]
have used a two phase approach for system energy
minimization for weakly hard real time system with
(𝕞𝕞,𝕜𝕜) constraints. The authors have suggested a
combination of DVS, DPD and PC techniques however,
neither have they taken into the account the preemption
overhead nor do they balance the effects of the three
techniques.

In this paper we aim to minimize the system
energy consumption for weakly hard real time system
modeled with (𝕞𝕞,𝕜𝕜) constraints using a fine balance of
DVS, DPD and PC. The reduction in energy
consumption is achieved at both, task as well as job
level for which we adopt a three phase approach. In the
first phase the task level view of the system is taken. The
feasibility to each task in the set is ensured keeping in
account the preemption overhead. While the second
and third phase adopts job level view. A greedy based
preemption control technique is proposed at the job
level in the second phase. It is further refined in the third
phase by adjusting the speed assigned to a job and
accumulation of idle slots by delayed start to effectively
balance the three approaches.

The rest of the paper is organized as follows;
the next section provides a system model followed by
section III which presents our new approach along with
algorithm. The simulation results are enlisted in section
IV whereas section V concludes the work.

II. System Model
This paper aims to minimize the system energy

consumption for a system having independent periodic
task set 𝑇𝑇 = {𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3 … 𝜏𝜏𝑛𝑛} that assures minimum QoS
defined by (𝕞𝕞,𝕜𝕜). The priority of a job is assigned
based on the earliest deadline first policy. The system
consists of two types of components namely, frequency
dependent (processor) and frequency independent
(memory and peripheral devices). The following
considerations are made:

1. The frequency independent components are
represented by set 𝐴𝐴 = {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 … 𝑎𝑎𝑁𝑁}
where 𝑎𝑎𝑖𝑖 represents a memory or peripheral
device. The power management policies
reported in [29, 37, 39] used only two states
(active and sleeping) for a frequency
independent component and there is no

Table 1: Symbol Table
 𝕖𝕖𝑝𝑝 ,𝑖𝑖

Computation required by the frequency dependent
components of task 𝜏𝜏𝑖𝑖

 𝕖𝕖𝑑𝑑 ,𝑖𝑖
Computation required by the frequency
independent components of task 𝜏𝜏𝑖𝑖

 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑗𝑗

Release time of a job 𝜏𝜏𝑖𝑖

𝑗𝑗 , i.e., 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑗𝑗 = 𝑗𝑗 ∗ 𝑝𝑝𝑖𝑖

𝐷𝐷𝑖𝑖
𝑗𝑗

Absolute deadline of a job 𝜏𝜏𝑖𝑖

𝑗𝑗 , i.e., 𝐷𝐷𝑖𝑖
𝑗𝑗 = 𝑗𝑗 ∗ 𝑝𝑝𝑖𝑖 + 𝑑𝑑𝑖𝑖

𝑓𝑓𝑓𝑓𝑖𝑖

𝑗𝑗

Finish time of a job 𝜏𝜏𝑖𝑖

𝑗𝑗

 𝑠𝑠𝑐𝑐𝑐𝑐
Critical speed of the processor for the task 𝜏𝜏𝑖𝑖

 𝑠𝑠𝑎𝑎𝑎𝑎
Speed of the processor assigned to the task 𝜏𝜏𝑖𝑖

 𝑠𝑠𝑎𝑎𝑎𝑎
𝑗𝑗

Speed of the processor assigned to the job 𝜏𝜏𝑖𝑖

𝑗𝑗

𝑎𝑎𝑖𝑖
𝑗𝑗

Frequency independent component 𝑎𝑎𝑖𝑖

is

associated with task 𝜏𝜏𝑗𝑗

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑖𝑖
𝑗𝑗

Energy consumed per unit time by the device 𝑎𝑎𝑖𝑖

 associated with task 𝜏𝜏𝑗𝑗

in sleep state

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑖𝑖
𝑗𝑗

Energy consumed per unit time by the device 𝑎𝑎𝑖𝑖

 associated with task 𝜏𝜏𝑗𝑗

in active state
 𝑡𝑡ℎ𝑑𝑑𝑖𝑖

DPD threshold of the device 𝑎𝑎𝑖𝑖
 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Energy consumed per unit time by the processor in
the idle state

 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
Energy consumed per unit time by the processor in
the sleep state

 𝐸𝐸𝑝𝑝𝑝𝑝
Energy consumed per unit time by the processor
when running at a speed 𝑠𝑠𝑖𝑖

(𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐶𝐶𝐶𝐶𝑖𝑖3

where 𝐶𝐶

is
constant)

 𝑡𝑡ℎ𝑝𝑝

DPD threshold of the processor
 𝐿𝐿

MK_hyperperiod

 𝔎𝔎

Preemption Overhead is context switching time
required when a higher priority preempts a lower
priority task

 𝐸𝐸𝔎𝔎
Energy consumed during each preemption

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

13

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

recourse conflicts. Same consideration is taken
in this work.

2. The frequency dependent components (DVS
processor) can operate at 𝒩𝒩 + 1 discrete
voltage levels, i.e., 𝑉𝑉 = {𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 … 𝑣𝑣𝒩𝒩}
where each voltage level is associated with a
corresponding speed from the set 𝑆𝑆 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠1,
𝑠𝑠2, 𝑠𝑠3 … 𝑠𝑠𝒩𝒩}.The speed 𝑠𝑠1 is the lowest
operating speed level measure at voltage v1
whereas maximum speed s𝒩𝒩 at the voltage
level v𝒩𝒩. A processor can lie in one of the three
possible states namely active, idle and sleep. In
the active state the processor can run at any of
the speed levels between s1 to 𝑠𝑠𝒩𝒩, while in the
idle state and sleep state it will function at
speed 𝑠𝑠1 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 repectively.

3. Each task 𝜏𝜏𝑖𝑖 ∈ 𝑇𝑇 has attributes < 𝑒𝑒𝑖𝑖(𝑠𝑠𝑗𝑗), 𝑝𝑝𝑖𝑖 , 𝑑𝑑𝑖𝑖 ,
𝕞𝕞𝑖𝑖 ,𝕜𝕜𝑖𝑖 > where 𝑒𝑒𝑖𝑖(𝑠𝑠𝑗𝑗), 𝑝𝑝𝑖𝑖 and 𝑑𝑑𝑖𝑖 are the
computation time at the speed 𝑠𝑠𝑗𝑗 , period and
relative deadline respectively. We assume that
the task relative deadline is conservative [38]
i.e. 𝑑𝑑𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖 which is same as considered in [29,
37]. Beside these temporal characteristics
minimum QoS requirement is represented by a
pair of integers (𝕞𝕞𝑖𝑖 ,𝕜𝕜𝑖𝑖), such that out of 𝕜𝕜𝑖𝑖
consecutive release of 𝜏𝜏𝑖𝑖 at least 𝕞𝕞𝑖𝑖 releases
must meet their deadline.
The symbols used in this paper are summarized

in the table1 while the terms used are discussed in the
next subsection.

a) Terms Used
MK_hyperperiod (𝑳𝑳): It can be defined as the

point after which all the task in the set are in phase and
(𝕞𝕞,𝕜𝕜) pattern for each task is restarted i.e. the situation
at time t = 0 is restored, mathematically,𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿((𝕜𝕜𝑖𝑖 ∗
𝑝𝑝𝑖𝑖) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1, 2 …𝑛𝑛) where LCM stands for least
common multiple.

Response time �𝑹𝑹𝒊𝒊
𝒋𝒋(𝑠𝑠)� of a job 𝝉𝝉𝒊𝒊

𝒋𝒋: It is the sum

of the time requirement of the job 𝜏𝜏𝑖𝑖
𝑗𝑗 and higher priority

preempting jobs. Mathematically, 𝑅𝑅𝑖𝑖
𝑗𝑗 (𝑠𝑠) = 𝑒𝑒𝑖𝑖(𝑠𝑠) +

∑ (𝑒𝑒ℎ(𝑠𝑠𝑎𝑎ℎ𝑥𝑥) + 𝔎𝔎)∀𝜏𝜏ℎ
𝑥𝑥∈𝐻𝐻(𝑖𝑖 ,𝑗𝑗) where 𝐻𝐻(𝑖𝑖,𝑗𝑗) is the set of

mandatory jobs preempting 𝜏𝜏𝑖𝑖
𝑗𝑗 during the time

�𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑗𝑗 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

𝑗𝑗 + 𝑅𝑅𝑖𝑖
𝑗𝑗 ,𝛾𝛾−1(𝑠𝑠𝑘𝑘)�. The equation 𝑅𝑅𝑖𝑖

𝑗𝑗 (𝑠𝑠) is an
iterative equation which can be solved using different
iterations represented by 𝛾𝛾 = 0, 1, 2 …∞. For the first
iteration 𝑅𝑅𝑖𝑖

𝑗𝑗 ,0(𝑠𝑠) = 𝑒𝑒𝑖𝑖(𝑠𝑠). The iterative equation 𝑅𝑅𝑖𝑖
𝑗𝑗 ,𝛾𝛾(𝑠𝑠)

terminates when either of the two conditions is satisfied:
a) value of the two consecutive iteration is same i.e.,
𝑅𝑅𝑖𝑖
𝑗𝑗 ,𝛾𝛾−1(𝑠𝑠) = 𝑅𝑅𝑖𝑖

𝑗𝑗 ,𝛾𝛾(𝑠𝑠) or b) value exceeds its relative
deadline i.e., 𝑅𝑅𝑖𝑖

𝑗𝑗 ,𝛾𝛾(𝑠𝑠) > 𝑑𝑑𝑖𝑖 .
DPD Threshold (𝒕𝒕𝒕𝒕): In DPD policy a

component is switched to a sleep state on the
occurrence of idle slot to save energy. For such a

switching the system has to save the state of the task at
the beginning and restore the saved status at the end of
sleep state (switching from sleep state to active state).
These two activities incur an overhead called the DPD
overhead. To have a positive energy saving the
component should not be switched to sleep state for
duration (𝑡𝑡) less than the DPD threshold 𝑡𝑡ℎ which can
be estimated as follows:

Energy consumed by a component when it
remains idle during idle slot 𝑡𝑡 is 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡
 (1)
Energy consumed in sleep state during 𝑡𝑡

Energy consumed by the component to go into
sleep state is 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and to awake is 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the energy per unit time to save the
context, 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the energy per unit time to retrieve the
context and 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 are the time the component
needs to save and wake during context switch
respectively. Thus, the component can sleep for time
(𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) and consume energy at a rate 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 .
Hence, the energy consumed for sleep state of duration
𝑡𝑡 would be

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) (2)

To attain a positive energy gain the energy
consumed by switching to sleep state (as measured in
equation (2)) should be less than that consumed in the
idle mode (as measure in equation (1)), i.e., (2)<(1)

⇒ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) <
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡

In worst case when no energy gain is measured
(equation (1)=(2)) then the threshold 𝑡𝑡ℎ

can be

estimated
𝑡𝑡ℎ =
�𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+

𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)� �𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠��

(3)

The threshold of each component can be estimated by
equation (3).

Substituting the value of 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +

𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

in
terms of

th

in the equation (2) we get,

𝑡𝑡ℎ�𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 � + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) +

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

(3a)

Energy saved by switching to sleep state would be the
difference between equations (1) and (3a).

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 − 𝑡𝑡ℎ�𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 � + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠

= (𝑡𝑡 − 𝑡𝑡ℎ)�𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 �

If (𝑡𝑡 > 𝑡𝑡ℎ)then the energy gain (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

would be
positive hence, energy consumed in switching to sleep
state and remain in it for 𝑡𝑡

units of time would reduce
energy consumption and hence, is advisable to switch
to sleep state.

For (𝑡𝑡 = 𝑡𝑡ℎ)the energy consumed to remain idle or
sleep are same.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

14

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

When (𝑡𝑡 < 𝑡𝑡ℎ)then it is recommended to remain in the
idle state rather than to switch to sleep state in which it
would consume more energy.
Thus, the energy consumed by a component for an idle
slot of (𝑡𝑡)would be:

𝜀𝜀(𝑡𝑡) = �
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡ℎ

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡 − 𝑡𝑡ℎ) 𝑡𝑡 > 𝑡𝑡ℎ
� (4)

Critical speed of the task (𝒔𝒔𝒄𝒄𝒄𝒄): The DVS

technique advocates that reduction in the speed of the
frequency dependent component would reduce the
energy consumption. This may not be true when the
system is having both frequency dependent and
independent components because lower speed leads to
longer execution time for which the frequency
independent components would remain active and
consume energy. That is, on reduction in speed, the
system energy consumption first decreases then it starts
increasing incase speed is further reduced. The speed
at which system energy requirement is least for a task is
called the critical speed. Each task in the system has its
own critical speed because its computation demand
and set of associated components may differ. It can be
determined as follows:

Consider a task 𝜏𝜏𝑖𝑖 with computation time
𝑒𝑒𝑖𝑖(𝑠𝑠) = 𝕖𝕖𝑝𝑝 𝑠𝑠⁄ + 𝕖𝕖𝑑𝑑 where 𝕖𝕖𝑝𝑝 and 𝕖𝕖𝑑𝑑 are the computation
requirement for frequency dependent component at the
speed s and independent component respectively. Then
the energy consumed by the task 𝜏𝜏𝑖𝑖 at speed 𝑠𝑠 would
be
𝐸𝐸𝑖𝑖(𝑠𝑠) = 𝑒𝑒𝑖𝑖(𝑠𝑠) ∗ �𝐸𝐸𝑝𝑝𝑝𝑝 + ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘

𝑖𝑖𝑘𝑘∈𝐴𝐴 �
 where 𝜔𝜔 is the speed index of 𝑠𝑠, i.e., 𝑠𝑠𝜔𝜔 = 𝑠𝑠.
Thus, 𝐸𝐸𝑝𝑝𝑝𝑝 is the rate of energy consumption of the
processor at speed 𝑠𝑠(𝑜𝑜𝑜𝑜 𝑠𝑠𝜔𝜔), ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘

𝑖𝑖𝑘𝑘∈𝐴𝐴 is the total
energy consumption rate of all the frequency
independent devices associated with task 𝜏𝜏𝑖𝑖 .

In [11, 13] authors have used energy model
where energy consumed by the processor is directly
proportional to the cube of the operating speed i.e.,
𝐸𝐸𝑝𝑝 ∝ 𝑠𝑠3 hence, 𝐸𝐸𝑝𝑝 = 𝐶𝐶𝑠𝑠3 where 𝑠𝑠 ∈ 𝑆𝑆 and 𝐶𝐶 is the
proportionality constant.

As the task energy consumption function, 𝐸𝐸𝑖𝑖(𝑠𝑠)
is a strictly convex function over speed 𝑠𝑠 it can have a
single speed at which energy consumption could be
minimum, this can be estimated by setting its first
derivative to zero followed by the second derivative to
be positive.
Thus, taking the first derivative of 𝐸𝐸𝑖𝑖(𝑠𝑠) with respect to 𝑠𝑠
as 𝜕𝜕𝜕𝜕(𝑠𝑠)

𝜕𝜕𝜕𝜕
= �−�𝕖𝕖𝑝𝑝 𝑠𝑠2⁄ ��𝐶𝐶𝑠𝑠3 + ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘

𝑖𝑖𝑘𝑘∈𝐴𝐴 �� +

��𝕖𝕖𝑝𝑝 𝑠𝑠⁄ + 𝕖𝕖𝑑𝑑�(3𝐶𝐶𝑠𝑠2)� = 0
𝜕𝜕𝜕𝜕(𝑠𝑠)
𝜕𝜕𝜕𝜕

= 3𝐶𝐶𝕖𝕖𝑑𝑑𝑠𝑠4 + 2𝐶𝐶𝑠𝑠3𝕖𝕖𝑝𝑝 − 𝕖𝕖𝑝𝑝 ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
𝑖𝑖𝑘𝑘∈𝐴𝐴 = 0 (5)

By Descartes’ Rule of Signs [43], there is only
one positive root of the equation since the sign between
two consecutive terms changes only once. This root is

referred to as the critical speed of the task 𝜏𝜏𝑖𝑖
represented as 𝑠𝑠𝑐𝑐𝑐𝑐 .

In the following subsection we discuss the
various methods for partitioning the jobs into mandatory
and optional. The partitioning problem is NP-hard [40]
hence, various heuristic techniques (Red_Pattern,
Even_Pattern, Rev_Pattern, Hyd_Pattern, Mix_Pattern)
can be used which are discussed below:

Deeply Red-Pattern (Red_Pattern): This pattern
was proposed by Koren & Shasha [41]. Mathematically,
this can be described as

𝜋𝜋𝑖𝑖
𝑗𝑗 = �1, 0 ≤ 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝕜𝕜𝑖𝑖 < 𝕞𝕞𝑖𝑖

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑗𝑗 = 0, 1, … . .𝕜𝕜𝑖𝑖 − 1

When 𝜋𝜋𝑖𝑖
𝑗𝑗 is 1, release 𝜏𝜏𝑖𝑖

𝑗𝑗 is mandatory while it is
optional in case 0 is assigned to 𝜋𝜋𝑖𝑖

𝑗𝑗 . We refer this
pattern as Red_Pattern. Advantage of applying this
pattern to a task set for energy minimization is that it
aligns the optional jobs together so that a component
has a better opportunity to switch into sleep state to
save energy. For a task whose critical speed is higher
than or equal to the highest possible speed (𝑠𝑠𝒩𝒩) the
operating speed should never be scaled down.
Assigning Red_Pattern to such a task helps to extend
the idle interval for switching to sleep state. However, for
a task whose critical speed is lower than 𝑠𝑠𝒩𝒩

Red_Pattern overloads the system leading to large size
busy intervals and need more energy to be feasible.

 Evenly Distributed Pattern (Even_Pattern):

Ramanathan [42] used evenly distributed pattern in
which the first release is always mandatory and the
distribution of mandatory and optional is evenly i.e.,
alternating. Mathematically, this can be described as

𝜋𝜋𝑖𝑖
𝑗𝑗 = �1,

𝑖𝑖𝑖𝑖

𝑗𝑗 = ��𝑗𝑗∗𝕞𝕞𝑖𝑖

𝕜𝕜𝑖𝑖
� ∗

 𝕜𝕜𝑖𝑖
𝕞𝕞𝑖𝑖
�

0,

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑓𝑓𝑓𝑓𝑓𝑓

� 𝑗𝑗 =

0, 1, …

𝕜𝕜𝑖𝑖 − 1

Reverse Evenly Distributed Pattern
(Rev_Pattern):

This pattern is a reverse of the

Even_Pattern, hence the first release is always optional
and the distribution of mandatory and optional is
alternating. Mathematically:

𝜋𝜋𝑖𝑖
𝑗𝑗 = �

0,

𝑖𝑖𝑖𝑖

𝑗𝑗 = ��𝑗𝑗∗(𝕜𝕜𝑖𝑖−𝕞𝕞𝑖𝑖)

𝕜𝕜𝑖𝑖
� ∗

𝕜𝕜𝑖𝑖

(𝕜𝕜𝑖𝑖−𝕞𝕞𝑖𝑖)
�

1,

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� 𝑗𝑗 =

0, 1, …𝕜𝕜𝑖𝑖 − 1

This pattern was first proposed by Niu & Quan
[11] and we refer it as Rev_Pattern.

Hybrid Pattern (Hyd_Pattern):

This pattern was

proposed by [11] in which instead of assigning same
pattern to all the tasks

in the task set, they assigned

different type of patterns (Red_Pattern or Even_Pattern)
to each task. For example, task 𝜏𝜏1

is partitioned into

mandatory and optional according to Red_Pattern while
𝜏𝜏2

and 𝜏𝜏3

could be assigned Red_Pattern or

Even_Pattern. Thus, yielding 2𝑛𝑛

possible combination of

pattern assignment where 𝑛𝑛

is the number of the tasks

in the task set.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

15

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

We refer it to as Even_Pattern.

©2011 Global Journals Inc. (US)

Mixed Pattern (Mix_Pattern): The hybrid pattern
allows a task in the task set to be scheduled by
Red_Pattern or Even_Pattern. In both cases at least the
first release of each task is mandatory (if not more e.g.
(𝕞𝕞,𝕜𝕜) = {(3, 5), (4, 7)} first two releases of both the
task are mandatory with the Hyd_Pattern) and are in
phase hence, will overload the system, forcing it to be
feasible with high energy requirement. Therefore, to
improve the performance of Hyd_Pattern authors [29]
suggested a mixed pattern (Mix_Pattern) which
combines the Hyd_Pattern with the Rev_Pattern yielding
3𝑛𝑛 possible combination of pattern assignment. By
including the Rev_Pattern the Mix_Pattern would give a
task fairer chance to execute at lower speed assignment
(the second release of both the task in the above
example would be mandatory while the first may or may
not be so. Since the second release of a task would
usually be out of phase with the other releases and will
not overload the system as hybrid pattern does). Thus,
Mix_Pattern is the superset of all the above suggested
patterns. In this paper we would use Mix_Pattern.

In the following section we propose the energy
minimization technique for the weakly hard real time
system which was modeled in this section.

III. Three-phase Energy Minimization
Technique

This work is refinement of the two phase
approach suggested by Agrawal et. al. [29]. In the first
phase authors estimate the critical speed for each task
and use a static partitioning strategy called Mix_Pattern.
Based on the critical speed and the mandatory job
distribution authors assigned the speed to each task
such that the task set is feasible. While in phase two the
authors suggested a preemption control strategy. They
suggested increasing the speed of the lower priority job
so that it can complete before preemption. However, the
reduction in energy due to preemption control may be
less than the energy consumed to fit the lower priority
job in the slack of the higher priority job, i.e., the
technique may be counter productive. In such cases
they suggest to execute at the assigned speed as was
done by Niu and Quan [37].

In this paper we suggest a three phase
technique for system energy minimization. In the first
phase we generate a feasible schedule which assigns
the speed closest to the critical speed to all the tasks
partitioned by Mix_Pattern. In the second phase, we
refine the preemption control technique suggested by
Agrawal et. al. [29], Niu and Quan [37] after locating
their pitfalls. Further, in the third phase we measure the
idle slots available on either side of a job execution
window. Based on which we adjust the speed of the job
or delay the starting of a job so as to combine the two
slot. In the following subsection we illustrate the three
phases.

Phase-1: Task Level Feasibility and Speed Assignment

In this phase we first estimate the critical speed
of each task according to the equation (5). Further, the
jobs of each task are marked mandatory/optional
according to Mix_Pattern and speed closest to the
critical speed on which the task set is feasible is
assigned. The algorithm for speed_fitting as suggested
by [29] can be stated below.

// Greedy approach based speed fitting algorithm
 Algorithm speed_fitting(task set 𝑻𝑻)
Begin
1. For all the task 𝜏𝜏𝑖𝑖 ∈ 𝑇𝑇

Do
a. Compute the critical speed for each task 𝑠𝑠𝑐𝑐𝑐𝑐
b. Initialize 𝜔𝜔𝑖𝑖 with the speed index of 𝑠𝑠𝑐𝑐𝑐𝑐
c. Assign 𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑠𝑠𝜔𝜔𝑖𝑖 (which is same as 𝑠𝑠𝑐𝑐𝑐𝑐)
Repeat

2. While (not feasible)
Do
a. For all task 𝜏𝜏𝑖𝑖 ∈ 𝑇𝑇
Do
i. If (𝜔𝜔𝑖𝑖 < 𝑁𝑁)
1. Compute

 Else
 1.

∇𝑖𝑖= ∞

 Repeat
 b.

Select a task 𝜏𝜏𝑖𝑖

with smallest ∇𝑖𝑖

 c.

If (𝜔𝜔𝑖𝑖 < 𝑁𝑁)

 i.

𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖 + 1

 ii.

𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑠𝑠𝜔𝜔𝑖𝑖

 iii.

Goto step 2

Else

 i.

Goto step 2b. to select next smallest ∇𝑖𝑖

 Repeat
 End

 In the following subsection we describe the job level
second phase.

 Phase-2: Modified Preemption Control Technique
 The feasible schedule generated after

speed_fitting for the task set 𝑇𝑇

in the first phase may not

be optimal in terms of energy consumption. To further
reduce the energy consumption in this phase we
suggest a greedy based preemption control followed by
speed adjustment and delayed start in third phase.

 When a job is scheduled on the processor then
the associated devices are switched to active state in
which they remain till it completes. Thus, if a lower
priority job is preempted by the higher priority job then
the associated device remain active and consume
energy for the time for which the job is preempted. This
extra consumption in the energy can be reduced by

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

16

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

∇𝑖𝑖= ���𝐸𝐸𝑝𝑝𝜔𝜔𝑖𝑖+1𝑒𝑒𝑖𝑖(𝑠𝑠𝜔𝜔𝑖𝑖+1)� − �𝐸𝐸𝑝𝑝𝜔𝜔𝑖𝑖𝑒𝑒𝑖𝑖(𝑠𝑠𝜔𝜔𝑖𝑖)��𝑚𝑚𝑖𝑖� 𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖�

©2011 Global Journals Inc. (US)

delaying the higher priority job if possible and
completing the execution of the lower priority job in the
meanwhile (laxity).

The higher priority preempting job can be
delayed up to its laxity available so that it does not miss
its deadline. This laxity can be estimated as follows:
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑥𝑥 = 𝐷𝐷ℎ𝑥𝑥 − 𝑅𝑅ℎ𝑥𝑥(𝑠𝑠𝑎𝑎ℎ𝑥𝑥) ∀𝜏𝜏ℎ𝑥𝑥 ∈ 𝐻𝐻(𝑖𝑖,𝑗𝑗) where 𝐻𝐻(𝑖𝑖,𝑗𝑗) is the set
of mandatory jobs which preempts 𝜏𝜏𝑖𝑖

𝑗𝑗 such that
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑥𝑥 > 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

𝑗𝑗 . Hence, the time available for execution non-
preemptively by the lower job would be

𝑇𝑇𝑇𝑇𝑖𝑖
𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚∀𝜏𝜏ℎ𝑥𝑥∈𝐻𝐻(𝑖𝑖 ,𝑗𝑗):�𝑟𝑟𝑟𝑟𝑟𝑟ℎ

𝑥𝑥+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ
𝑥𝑥�<𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑥𝑥 −

𝑡𝑡𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟+𝑙𝑙𝑎𝑎𝑥𝑥𝑖𝑖𝑡𝑡𝑦𝑦ℎ𝑥𝑥,𝐷𝐷𝑖𝑖𝑗𝑗−𝑡𝑡𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟 (6)

where 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the current time when no higher
job is available then 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑥𝑥 = ∞ . If the time available is
sufficient to complete the job 𝜏𝜏𝑖𝑖

𝑗𝑗 non-preemptively as
suggested by [37] then we do so. However, when more
than one higher priority jobs preempt a single lower
priority job then approach suggested in [37] may fail to
finish the lower priority job earlier. This is due to the fact
that once a higher job finishes and another higher
priority job is available in the ready queue then it would
be scheduled as it has priority higher than the

incomplete preempted job. This can be observed from
the example 1.

Example1: Consider a task set 𝑇𝑇 =
{〈𝑒𝑒𝑖𝑖(𝑠𝑠𝑎𝑎𝑎𝑎), 𝑝𝑝𝑖𝑖 , 𝑑𝑑𝑖𝑖〉: 〈15, 25, 25〉, 〈25, 100, 100〉}. When
scheduled without preemption control then the response
time of the lower priority job 𝜏𝜏2

1 after being preempted by
𝜏𝜏1

2 and 𝜏𝜏1
3 would be 70 refer figure 1a. However, as

illustrated by figure 1b (obtained by utilizing the concept
of preemption control used in [37]) the response time of
job 𝜏𝜏2

1 remains 70 whereas the number of preemptions
is reduced from 2 to 1. This is because 𝜏𝜏2

1 is unable to
complete in slack of 𝜏𝜏1

2 which completes at time 50 after
which the scheduler schedules the higher priority job 𝜏𝜏1

3
since; no job is being preempted so no preemption
control is applied.

Thus, we refine the preemption control
approach suggested in [37] without varying the speed
as modified preemption control at assigned speed
(MPCAS). Here a lower priority job may be allowed to
restart even when higher priority job is ready, provided
feasibility of the higher priority is assured. The
effectiveness of this approach is seen in figure 1(c)
where the response time of the job 𝜏𝜏2

1 is reduced to 55
from 70. The proposed MPCAS approach is given as
below:

Figure 1: Schedule for task set 𝑇𝑇 of example 1: (a) Uncontrolled Preemption (b) Preemption Control as
suggested by [37], (c) Preemption Control by proposed MPCAS algorithm (d) Preemption Control by the

25 50 15 35 0 65 75

0 70

25 50 15 40 0 65 75

0 70

(a) (b)

25 50 15 35 0 70 75

0 55 0 38.7

25 50 15 38.7 0 65 75

(c) (d)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

17

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

higher priority is assured. The effectiveness of this
approach is seen in figure 1(c) where the response time
of the job 𝜏𝜏2

1 is reduced to 55 from 70. The proposed
MPCAS approach is given as below:
// Preemption control at the assigned speed
//Algorithm MPCAS (task set 𝑻𝑻)
Begin

1. Set the 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 // the current time
2. For all jobs in one MK_hyperperiod
Do

a. if(incomplete_queue is empty)
i. if(ready_queue is empty)
1. wait for a job to arrive in it
2. Update 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

ii. Let 𝜏𝜏𝑖𝑖
𝑗𝑗 be read from the ready_queue

iii. Estimate the time available 𝑇𝑇𝑇𝑇𝑖𝑖
𝑗𝑗

iv. If �𝑇𝑇𝑇𝑇𝑖𝑖
𝑗𝑗 ≥ 𝑒𝑒𝑖𝑖(𝑠𝑠𝑖𝑖

𝑗𝑗)�
1. Execute 𝜏𝜏𝑖𝑖

𝑗𝑗 non-preemptively for 𝑒𝑒𝑖𝑖(𝑠𝑠𝑖𝑖
𝑗𝑗)

2. Update 𝑡𝑡𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒𝑖𝑖(𝑠𝑠𝑖𝑖
𝑗𝑗)

3. 𝑒𝑒𝑖𝑖�𝑠𝑠𝑖𝑖
𝑗𝑗 � = 0

4. Goto step 2a.
v. Else

1. Execute 𝜏𝜏𝑖𝑖
𝑗𝑗 non-preemptively for 𝑇𝑇𝑇𝑇𝑖𝑖

𝑗𝑗
2. 𝑒𝑒𝑖𝑖�𝑠𝑠𝑖𝑖

𝑗𝑗 � = 𝑒𝑒𝑖𝑖�𝑠𝑠𝑖𝑖
𝑗𝑗 � − 𝑇𝑇𝑇𝑇𝑖𝑖

𝑗𝑗 + 𝔎𝔎
3. Insert 𝜏𝜏𝑖𝑖

𝑗𝑗 into incomplete_queue based on its
priority

4. Update 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑇𝑇𝑖𝑖
𝑗𝑗

5. Goto step 2a.
b. Else
i. Let 𝜏𝜏𝑖𝑖

𝑗𝑗 be read from the incomplete_queue
ii. Estimate the time available 𝑇𝑇𝑇𝑇𝑖𝑖

𝑗𝑗
iii. If �𝑇𝑇𝑇𝑇𝑖𝑖

𝑗𝑗 ≥ 𝑒𝑒𝑖𝑖(𝑠𝑠𝑖𝑖
𝑗𝑗)�

1. Execute 𝜏𝜏𝑖𝑖
𝑗𝑗 non-preemptively for 𝑒𝑒𝑖𝑖(𝑠𝑠𝑖𝑖

𝑗𝑗)
2. Update 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒𝑖𝑖(𝑠𝑠𝑖𝑖

𝑗𝑗)
3. 𝑒𝑒𝑖𝑖�𝑠𝑠𝑖𝑖

𝑗𝑗 � = 0
4. Goto step 2a.

Else
1. Insert 𝜏𝜏𝑖𝑖

𝑗𝑗 into incomplete_queue based on its
priority

2. Goto step 2.a.i.
Repeat
End

The MPCAS algorithm would reduce the
response time of the lower priority job (𝜏𝜏2

1 would finish at
time 55 for the example) so the associated devices have
better opportunity to switch to sleep state and save
energy according to DPD. However, when component’s
DPD threshold is large than this reduction in response
time may not be sufficient to allow the associated
components to sleep and save energy. Agrawal et. al.
[29] increase the speed of the lower priority job and
hence, reduce its execution time so that it can fit in the
slack available before it could be preempted (speed of

the job 𝜏𝜏2
1 would be increased such that it would finish

by 35 in the example). The authors themselves state that
this may be counter productive. That is, increment in
energy consumption by executing the lower priority job
at higher speed is more than the energy reduction
gained due to early switching to sleep state for some
components. To overcome this drawback we suggest a
speed refinement for the preempted lower priority job as
well as preempting higher priority jobs. This speed
combination is predicted by greedy based preemption
control (GBPC) which utilizes right and left idle slot (refer
figure 2 and definition 1, 2, 3, 4) of the processor and
the devices.

Definition 1: The device left idle slot of a job 𝜏𝜏𝑖𝑖
𝑗𝑗 it is the

time when the previous job of the same task �𝜏𝜏𝑖𝑖
𝑗𝑗−1�

finishes and relinquishes the resource 𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 to the time

𝛽𝛽𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗when this job 𝜏𝜏𝑖𝑖

𝑗𝑗 is scheduled for the first time.
Definition 2: The device right idle slot of a job 𝜏𝜏𝑖𝑖

𝑗𝑗 is the
time when this job �𝜏𝜏𝑖𝑖

𝑗𝑗 � finishes and relinquishes the
resource 𝛼𝛼𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 to the time 𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗when the next job of the

same task �𝜏𝜏𝑖𝑖
𝑗𝑗+1� is scheduled for the first time.

Definition 3: The processor left idle slot of a job 𝜏𝜏𝑖𝑖
𝑗𝑗

starts when all the jobs in the ready queue finishes 𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗

to the time job 𝜏𝜏𝑖𝑖
𝑗𝑗 to its released �𝛽𝛽𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 � to the empty

queue. Mathematically, 𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝛽𝛽𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 − 𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 ��

Definition 4: The processor right idle slot of a
job 𝜏𝜏𝑖𝑖

𝑗𝑗 is the time when it finishes and relinquishes the
processor 𝛼𝛼𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 to the time any other job is scheduled on

it 𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 .

Thus, the left idle time for the device and the
processor are 𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 = � 𝛽𝛽𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 − 𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 � and 𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 =

�𝛽𝛽𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 − 𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 � respectively whereas 𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 = � 𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 −

𝛼𝛼𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �, 𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 = �𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 − 𝛼𝛼𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 � are the right idle slots. As
there is no resource conflict for frequency independent
component so whenever a task is started first time all
the associated resources are activated and remain to be
so till the job completes. Thus, the left as well as the
right idle time for any two frequency independent

𝛽𝛽𝑙𝑙𝑙𝑙 𝑖𝑖+1
𝑘𝑘

𝜏𝜏𝑖𝑖+1
𝑘𝑘

𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖+1
𝑘𝑘

𝛼𝛼𝑟𝑟𝑟𝑟 𝑖𝑖+1
𝑘𝑘

𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖+1
𝑘𝑘

𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖+1
𝑘𝑘 ,𝛼𝛼𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗

𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗

 𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 , 𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖+1

𝑘𝑘

Figure 2: Left and right idle

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

18

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

component associated with the same task are always
same. In the following subsection we estimate the
energy consumption required during the idle slots by the
device and the processor:

Energy estimation of device 𝒂𝒂𝒌𝒌𝒊𝒊 during the idle

slots: Consider an idle slot ��𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � 𝑜𝑜𝑜𝑜 �𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �� for a device 𝑎𝑎𝑘𝑘𝑖𝑖 associated with a job 𝜏𝜏𝑖𝑖

𝑗𝑗 . If idle
time is greater than its threshold 𝑡𝑡ℎ𝑑𝑑𝑘𝑘 then the device
would switch into sleep state otherwise it would remain
active. Thus, the energy consumed �𝜀𝜀𝑑𝑑𝑑𝑑𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)� by the
device as can be derived from the equation (4) as

𝜀𝜀𝑑𝑑𝑑𝑑𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =

�
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡ℎ𝑑𝑑𝑘𝑘
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
𝑖𝑖 𝑡𝑡ℎ𝑑𝑑𝑘𝑘 + 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘

𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡ℎ𝑑𝑑𝑘𝑘) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑡𝑡ℎ𝑑𝑑𝑘𝑘
�

(6)

Energy estimation for processor during the idle

slots: For a processor idle slot

��𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � 𝑜𝑜𝑜𝑜 �𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 ��, if this idle time is

greater than threshold of the processor 𝑡𝑡ℎ𝑝𝑝 then the
processor would switch to sleep state otherwise remain
in idle state. Thus, the energy consumption rate for the
processor can be estimated from the equation (4) is

𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =

�
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡ℎ𝑝𝑝
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 + 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡ℎ𝑝𝑝) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑡𝑡ℎ𝑝𝑝

� (7)

In the next subsection we estimate the energy
consumed by the frequency dependent and
independent components during job execution.

Energy estimation for response time �𝑹𝑹𝒊𝒊
𝒋𝒋�𝒔𝒔𝒊𝒊

𝒋𝒋�� of

a job 𝝉𝝉𝒊𝒊
𝒋𝒋: When a job 𝜏𝜏𝑖𝑖

𝑗𝑗 starts execution then all the
associated frequency independent devices are switched
to active state in which they remain till it completes. The
frequency dependent components work at the assigned
frequency for this task as well as other jobs preempting
it. Thus, the total energy consumed by a job 𝜏𝜏𝑖𝑖

𝑗𝑗 during its
response time

𝐸𝐸𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑖𝑖

𝑗𝑗 � = 𝑅𝑅𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑖𝑖

𝑗𝑗 � ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
𝑖𝑖𝑘𝑘∈𝐴𝐴 + 𝐸𝐸𝑝𝑝𝜔𝜔𝑖𝑖𝑒𝑒𝑖𝑖�𝑠𝑠𝑖𝑖

𝑗𝑗 � +
 ∑ �𝑒𝑒ℎ(𝑠𝑠𝑎𝑎ℎ𝑥𝑥)𝐸𝐸𝑝𝑝𝜔𝜔ℎ + 𝐸𝐸𝔎𝔎�∀𝜏𝜏ℎ

𝑥𝑥∈𝐻𝐻(

𝑖𝑖,𝑗𝑗)

(8)

where 𝜔𝜔𝑖𝑖 ,𝜔𝜔ℎ

are the speed index of 𝑠𝑠𝑖𝑖

𝑗𝑗 , 𝑠𝑠𝑎𝑎ℎ𝑥𝑥

and

𝐻𝐻(𝑖𝑖,𝑗𝑗)

is the set of mandatory jobs preempting job 𝜏𝜏𝑖𝑖

𝑗𝑗 .

The energy consumed by the frequency
independent component during

𝑅𝑅𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑖𝑖

𝑗𝑗 �

would be

𝑅𝑅𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑖𝑖

𝑗𝑗 � ∗ ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
𝑖𝑖𝑘𝑘∈𝐴𝐴 . Whereas, �𝐸𝐸𝑝𝑝𝜔𝜔𝑖𝑖 ∗ 𝑒𝑒𝑖𝑖�𝑠𝑠𝑖𝑖

𝑗𝑗 ��

will be

the processor energy consumed by the job 𝜏𝜏𝑖𝑖
𝑗𝑗 alone.

Further, job 𝜏𝜏𝑖𝑖
𝑗𝑗 would be preempted by ∀𝜏𝜏ℎ𝑥𝑥 ∈ 𝐻𝐻(𝑖𝑖,𝑗𝑗)

during its execution window �𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑗𝑗 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

𝑗𝑗 + 𝑅𝑅𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑖𝑖

𝑗𝑗 ��. A
preempting mandatory job 𝜏𝜏ℎ𝑥𝑥

would execute at its

assigned speed of 𝑠𝑠𝑎𝑎ℎ𝑥𝑥 , therefore it will consume energy
𝑒𝑒ℎ(𝑠𝑠𝑎𝑎ℎ𝑥𝑥) ∗ 𝐸𝐸𝑝𝑝𝜔𝜔ℎ . However, each time a job preempts 𝜏𝜏𝑖𝑖

𝑗𝑗 it

would incur energy overhead 𝐸𝐸𝔎𝔎 for accessing the
memory which is frequency independent [24]. Thus,
total energy consumed during response time of job 𝜏𝜏𝑖𝑖

𝑗𝑗 is
given in equation (8). Further, energy is also consumed
during the idle slots.

Total energy consumption during the left idle,
response time and right idle slots

Thus, the energy consumed by the device
during the left (and right) idle slot of a job 𝜏𝜏𝑖𝑖

𝑗𝑗 would be
𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 � (and 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 �) (refer equation (6)) while the
energy consumption by the processor during the left
(and right) idle slot would be 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � (and 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �)

(refer equation (7)). The energy consumed during the
execution of the job would be 𝐸𝐸𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑖𝑖
𝑗𝑗 � as estimated in the

equation (8). Thus, the energy consumption of the job 𝜏𝜏𝑖𝑖
𝑗𝑗

along with its left and the right idle slots is
 𝜀𝜀𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑖𝑖
𝑗𝑗 � = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 �+ 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝐸𝐸𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑖𝑖
𝑗𝑗 � + 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �

+ 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 � (9)
After estimating the energy we now discuss the

technique for greedy based preemption control. If the
lower priority job is preempted then the preemption
control at the assigned speed is done (using PCAS
algorithm) and the energy is estimated for the
preempting higher priority jobs and the preempted lower
priority job. If the lower priority job is still preempted by
one or more, higher priority jobs then the response time
of the lower priority can be further reduced. The
reduction in the response time of the lower priority job
can be achieved by increasing the speed of either the
higher priority bottleneck job 𝜏𝜏ℎ𝑥𝑥 (such that 𝑇𝑇𝑇𝑇𝑖𝑖

𝑗𝑗 =
�(𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑥𝑥 − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖

𝑗𝑗 �) or the preempted lower
priority job. The choice between the two is made based
on the minimum increment in energy, i.e.,
𝑚𝑚𝑚𝑚𝑚𝑚 �∆𝐸𝐸ℎ𝑥𝑥(𝑠𝑠ℎ𝑥𝑥),∆𝐸𝐸𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑖𝑖
𝑗𝑗 �� where

 ∆𝐸𝐸ℎ𝑥𝑥(𝑠𝑠ℎ𝑥𝑥) = 𝑒𝑒ℎ�𝑠𝑠𝜔𝜔ℎ+1��𝐸𝐸𝑝𝑝𝜔𝜔ℎ+1 + ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
ℎ𝑘𝑘∈𝐴𝐴 � −

𝑒𝑒ℎ�𝑠𝑠𝜔𝜔ℎ+1��𝐸𝐸𝑝𝑝𝜔𝜔ℎ + ∑ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
ℎ𝑘𝑘∈𝐴𝐴 �

 (𝜔𝜔ℎ is the speed index of 𝑠𝑠ℎ𝑥𝑥) similarly, estimate
∆𝐸𝐸𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑖𝑖
𝑗𝑗 �. The speed of the chosen job is incremented

and the energy is estimated. The process of further
reduction in response time of the lower priority job is
repeated and the energy for different combinations is
estimated till either a) the lower priority job is no longer
preempted; b) all the jobs are assigned maximum
available speed level. The speed combination which
requires minimum energy is assigned and the schedule
is updated.

Further, energy minimization is achieved by
improving the schedule obtained in phase-2.

Phase-3: Speed Adjustment and Delay Start (SADS)

After assigning speeds to each task in the
phase-1 ensuring feasibility followed by the reduction in

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

19

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

energy consumption by preemption control in the
second phase. This phase will adjust the speed
assigned (increase or decrease) and accumulate the
idle slot (delay start a job if possible) to reduce the
energy consumption. In this phase detail analysis of the
preemption controlled schedule is done where right and
left idle slot (refer figure 1 and definition 1, 2, 3, 4) of the
processor and the device are re-estimated. After
estimating the energy we now propose the new
technique for improvement namely, speed adjustment
and delay start which we finally combine to provide
overall reduction in energy. The next subsection
discusses the speed adjustment.

Speed adjustment

In the phase-1 the feasibility of the task set was
to be ensured by assigning the speed at the task level,
while the phase-2 increases the speed of some jobs to
decrease loss in energy due to preemption. In this
phase the speed is adjusted by considering each job
separately to reduce the energy consumption based on
the left and right idle slots. The philosophy for this
approach is that speed fitting was done at the task level
to make all the jobs feasible. Executing job at higher
speed may favor switching to sleep state by more
components (sleeping for more time) in some cases
while executing at lower speed may favor the idea of
DVS. Thus, depending on the left and the right idle slots
we estimate the optimal speed for each job which may
be different from that of the task. In the next subsection
we measure the energy consumption at the job level
after adjusting the speed.

Energy estimation of a job after adjusting the
speed
i. Energy estimation at speed 𝒔𝒔𝒂𝒂𝒂𝒂

𝒋𝒋 : The energy
consumed by the device during the left (or right) idle
slot would 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � (or 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �) (refer equation (6))

while the energy consumption by the processor during
the left(or right) idle slot would be 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � (or

𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 �) (refer equation (7)). The energy consumed

during the execution of the job would be 𝐸𝐸𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � as
estimated in the equation (8). Thus, the energy
consumption of the job 𝜏𝜏𝑖𝑖

𝑗𝑗 along with its left and the
right idle slots is
𝜀𝜀𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � = 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 � + 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 � + 𝐸𝐸𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � + 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 �

+ 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 �

ii. Energy estimation at speed 𝒔𝒔𝒙𝒙 < 𝒔𝒔𝒂𝒂𝒂𝒂
𝒋𝒋 : In a scenario

where some of the components may not be able to
switch to the sleep state (depending on their
thresholds) then executing the job at a lower speed
(𝑠𝑠𝑥𝑥) than the assigned speed �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � may save the
processor energy. But this execution is subject to the
availability of the right idle slot since this reduction in

speed will force longer response time. This extra time
can be measured as ∆𝑖𝑖

𝑗𝑗 (𝑠𝑠𝑥𝑥) = 𝑅𝑅𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥) − 𝑅𝑅𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑎𝑎𝑖𝑖
𝑗𝑗 � for

completion which will reduce the right idle slot by the
same amount.

In case the value of ∆𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥) > 𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 indicating that the
right idle slot is not long enough, hence, the lower
speed (𝑠𝑠𝑥𝑥) cannot be assigned. Otherwise energy
consumption will be
𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥) = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝐸𝐸𝑖𝑖

𝑗𝑗 (𝑠𝑠𝑥𝑥)

+ 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − ∆𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥)�

+ 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − ∆𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥)�

iii. Energy estimation at speed 𝒔𝒔𝒚𝒚 > 𝒔𝒔𝒂𝒂𝒂𝒂
𝒋𝒋 : When some

components are unable to switch to sleep state then
if a job executes at a higher speed then it will
complete earlier. This would improve the possibility to
switch the components into sleep state and increase
the sleeping time of the already sleeping
components. The time thus saved is ∆𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑦𝑦� =
𝑅𝑅𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦� − 𝑅𝑅𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎
𝑗𝑗 � which will increase length of the

right idle slot. Hence, the total energy consumption
will be
 𝜀𝜀𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦� = 𝜀𝜀𝑑𝑑𝑖𝑖

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝐸𝐸𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑦𝑦� +

𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − ∆𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦�� + 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 − ∆𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑦𝑦��.

Thus, in general the energy estimated at any speed s
can be stated as:
 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠) = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 � + 𝐸𝐸𝑖𝑖

𝑗𝑗 (𝑠𝑠) + 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 −
∆𝑖𝑖𝑗𝑗𝑠𝑠+𝜀𝜀𝑝𝑝𝑖𝑖𝑗𝑗𝛿𝛿𝑟𝑟𝑝𝑝𝑖𝑖𝑗𝑗 −∆𝑖𝑖𝑗𝑗𝑠𝑠 (10)

Where ∆𝑖𝑖
𝑗𝑗 (𝑠𝑠) = 𝑅𝑅𝑖𝑖

𝑗𝑗 (𝑠𝑠) − 𝑅𝑅𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 �
In the next subsection we discuss the technique

for accumulation of idle slots by delaying the task
execution window.

Delay Start Technique
In this part of the third phase we aim to assemble the

idle slots fragmented on the two sides of a job by
delaying its execution if the schedule permits i.e. shift
the job execution towards its deadline. This may enable
the associated components to sleep or sleep for longer
time to save energy. A job may delay its execution up to
its deadline so as to be feasible. But extending the job
up to its deadline may force the up coming job to miss
their deadlines. Thus, a job would be allowed to
consume only the processor right idle slot so that it may
not push the upcoming jobs. Thus, a job 𝜏𝜏𝑖𝑖

𝑗𝑗 may shift up

to 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐷𝐷𝑖𝑖
𝑗𝑗 ,𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 �, without missing its own deadline or
modifying the schedule of the subsequent jobs. Hence,
a delay will move the task execution by an amount
𝜃𝜃𝑖𝑖
𝑗𝑗 (𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐷𝐷𝑖𝑖

𝑗𝑗 ,𝛽𝛽𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 � − 𝑅𝑅𝑖𝑖

𝑗𝑗 (𝑠𝑠). In the next subsection
we measure the energy consumption at the job level
after delaying its execution and adjusting its speed.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

20

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

Energy estimation of a job with delayed start
i. Energy estimation due to delayed start at assigned

speed 𝒔𝒔𝒂𝒂𝒊𝒊
𝒋𝒋 : Delaying a job 𝜏𝜏𝑖𝑖

𝑗𝑗 would shift it towards
right will elongate the left idle slot of the components
hence provide better opportunity to the components
to switch to sleep state. Thus, when execution of a job
is shifted then its left idle slot will increase by 𝜃𝜃𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎
𝑗𝑗 �

while the right idle slot will decrease by the same. The
energy consumption of the job 𝜏𝜏𝑖𝑖

𝑗𝑗 along with its left
and the right idle slots is

𝜀𝜀𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � = 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 + 𝜃𝜃𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 �� + 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗+𝜃𝜃𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 �� +

𝐸𝐸𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � + 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − 𝜃𝜃𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 �� +

𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − 𝜃𝜃𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 ��.

ii. Energy estimation due to delayed start at speed
𝒔𝒔𝒙𝒙 < 𝒔𝒔𝒂𝒂𝒂𝒂

𝒋𝒋 : In a scenario where some of the
components may not be able to switch to the sleep
state (depending on their thresholds) then executing
the job at a lower speed (𝑠𝑠𝑥𝑥) than the assigned speed
�𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 � may save energy and reduce length of the right
idle slot. Further, delaying the job would add the
remaining right idle slot to the left idle slot, hence save
energy. The energy consumption will be

𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥) = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑗𝑗 (𝑠𝑠𝑥𝑥)� + 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 +

𝜃𝜃𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥)� + 𝐸𝐸𝑖𝑖(𝑠𝑠𝑥𝑥) + 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 − 𝜃𝜃𝑖𝑖

𝑗𝑗 (𝑠𝑠𝑥𝑥)� +

𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − 𝜃𝜃𝑖𝑖
𝑗𝑗 (𝑠𝑠𝑥𝑥)�.

iii. Energy estimation due to delayed start at speed
𝒔𝒔𝒚𝒚 > 𝒔𝒔𝒂𝒂𝒂𝒂

𝒋𝒋 : When some components are unable to
sleep in the left idle slot generated after
accumulation with speed 𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 then increasing the
speed would reduce the response time. Thus, a
combination of higher speed and shift would
elongate the left idle slot to provide room for
switching into the sleep state. Hence, the energy
consumption will be

𝜀𝜀𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦� = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑦𝑦�� + 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 + 𝜃𝜃𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦�� +

𝐸𝐸𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦� + 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 − 𝜃𝜃𝑖𝑖

𝑗𝑗 �𝑠𝑠𝑦𝑦�� +

𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − 𝜃𝜃𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑦𝑦��.

Thus, in general the energy estimated at any speed s
and shifting can be stated as

𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠) = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 + 𝜃𝜃𝑖𝑖

𝑗𝑗 (𝑠𝑠)� + 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 + 𝜃𝜃𝑖𝑖
𝑗𝑗 (𝑠𝑠)� +

𝐸𝐸𝑖𝑖(𝑠𝑠) + 𝜀𝜀𝑑𝑑𝑑𝑑
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − 𝜃𝜃𝑖𝑖
𝑗𝑗 (𝑠𝑠)� + 𝜀𝜀𝑝𝑝𝑝𝑝

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 − 𝜃𝜃𝑖𝑖

𝑗𝑗 (𝑠𝑠)� (11)

Combining adjusting the speed and delayed start
concept

Finally, combining the two concepts the speed
adjustment (equation (10)) and delayed (equation (11))
for considering each job for improvement individually we
get

𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 𝓈𝓈) = 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖
𝑗𝑗 + 𝓈𝓈𝓈𝓈𝑖𝑖

𝑗𝑗 (𝑠𝑠)� + 𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 + 𝓈𝓈𝓈𝓈𝑖𝑖
𝑗𝑗 (𝑠𝑠)� +

𝐸𝐸𝑖𝑖
𝑗𝑗 (𝑠𝑠) + 𝜀𝜀𝑑𝑑𝑑𝑑

𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 − 𝓈𝓈𝓈𝓈𝑖𝑖

𝑗𝑗 (𝑠𝑠) − 𝓈𝓈′∆𝑖𝑖
𝑗𝑗 (𝑠𝑠)� +

𝜀𝜀𝑝𝑝𝑝𝑝
𝑗𝑗 �𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖

𝑗𝑗 − 𝓈𝓈𝓈𝓈𝑖𝑖
𝑗𝑗 (𝑠𝑠) − 𝓈𝓈′∆𝑖𝑖

𝑗𝑗 (𝑠𝑠)� (12)

Where s ∈ S set of speed levels available, 𝓈𝓈 is a binary

number which has a value 1 if a shift operation is made
and 𝓈𝓈′ is its complement.

Thus, for minimum energy consumption of a job 𝜏𝜏𝑖𝑖
𝑗𝑗

must be assigned a speed s and delayed start operation
𝓈𝓈 such that 𝜀𝜀𝑖𝑖

𝑗𝑗 (𝑠𝑠, 𝓈𝓈) is minimum. Since, the left idle slot
of job is same as the right idle slot of the previous job.
Adjusting the speed/delay starting one job will affect the
previous job’s idle slots. Hence, by iterating the third
phase further reduction in energy is achieved. The
proposed Speed Adjustment and Delay Start can be
stated as SADS algorithm.

The effectiveness of proposed three phase algorithm
can be seen from the example 2 and table 2.

Example 2: Consider a task set 𝑇𝑇 = �〈𝑒𝑒𝑖𝑖 = �𝕖𝕖𝑝𝑝 ,𝑖𝑖 ,𝕖𝕖𝑑𝑑 ,𝑖𝑖�,
𝑝𝑝𝑖𝑖 , 𝑑𝑑𝑖𝑖〉: 〈(250, 5), 25, 25〉, 〈(210, 18), 100, 100〉� to be
scheduled on a DVS processor which can operate at
speed 𝑆𝑆 = {10, 25, 30, 35, 37, 40, 105} where its
threshold 𝑡𝑡ℎ𝑝𝑝 = 10. The device pool 𝐴𝐴 = {𝑎𝑎1, 𝑎𝑎2}
consists of two devices such that device 𝑎𝑎1 is
associated with task 𝜏𝜏1 and 𝑎𝑎2 with τ2 have attributes as
< 𝑎𝑎𝑘𝑘𝑖𝑖 , 𝑡𝑡ℎ𝑑𝑑𝑖𝑖 ,𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘

𝑖𝑖 , 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑘𝑘
𝑖𝑖 >: < 𝑎𝑎1

1, 10, 54687, 0.0 >, <
𝑎𝑎2

2, 30, 262285, 0.0 >. The preemption overhead is
𝔎𝔎 = 5 and energy it consumes for preemption is
E𝔎𝔎 = 8568937.

The critical speed (𝑠𝑠𝑐𝑐1, 𝑠𝑠𝑐𝑐2) as estimated from
equation (5) would be 25 and 30 respectively. The
MK_hyperperiod will be 100.
// Speed adjustment and delay start based third phase
algorithm
 //Algorithm SADS(task set T)
//input is the feasible schedule generated after speed
fitting and GBPC after phase-2
Begin
1. While (no further reduction in energy)

Do
a. For each job 𝜏𝜏𝑖𝑖

𝑗𝑗 ∈ 𝕄𝕄 where 𝕄𝕄 is the set of mandatory
jobs in the task set 𝑇𝑇 arriving during any
MK_hyperperiod (𝐿𝐿)
Do
i. Estimate the left and the right idle time for device
�𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 ,𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �and the processor �𝛿𝛿𝑙𝑙𝑙𝑙 𝑖𝑖

𝑗𝑗 ,𝛿𝛿𝑟𝑟𝑟𝑟 𝑖𝑖
𝑗𝑗 �

according to definitions 1, 2, 3 and 4.
ii. Assign speed to job 𝜏𝜏𝑖𝑖

𝑗𝑗 as 𝑠𝑠𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑠𝑠𝑎𝑎𝑎𝑎 and shifting as

𝓈𝓈𝑖𝑖
𝑗𝑗 = 0

iii. Assign 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜀𝜀𝑖𝑖
𝑗𝑗 �𝑠𝑠𝑎𝑎𝑎𝑎

𝑗𝑗 ,𝓈𝓈𝑖𝑖
𝑗𝑗 � according to the

equation (12)
iv. For every speed 𝑠𝑠 ∈ 𝑆𝑆
Do

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

21

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

1. Estimate 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 0) according to the equation (12)

2. If �𝑚𝑚𝑖𝑖𝑖𝑖 > 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 0)�

a. Update 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 0)

b. Update 𝑠𝑠𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑠𝑠 and shifting as 𝓈𝓈𝑖𝑖

𝑗𝑗 = 0
End if

3. Estimate 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 1) according to the equation (12)

4. If �𝑚𝑚𝑚𝑚𝑚𝑚 > 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 1)�

a. Update 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜀𝜀𝑖𝑖
𝑗𝑗 (𝑠𝑠, 1)

b. Update 𝑠𝑠𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑠𝑠 and shifting as 𝓈𝓈𝑖𝑖

𝑗𝑗 = 1
End if

End for
End for
2. Estimate the total energy for a MK_hyperperiod (𝐿𝐿)

 End while
End

In the following section we present the results
obtained by implementation of the approach discussed
in this section.

IV. Simulation Results
This section compares the performance of our

proposed three phase scheduling algorithm (in which
we apply greedy based preemption control, speed
adjustment and delayed start) referred to as GBSADS

with the higher speed preemption control (HSPC)
approach suggested by [29]. All simulation results are
computed on a DVS processor with operating speed
level set as 𝑆𝑆 = {0, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 … 𝑠𝑠10} where 𝑠𝑠𝑖𝑖 is a
uniform random number generated in the interval
[10, 200]. We consider ten types of devices with
multiple instances forming a pool of devices. For a task,
devices are randomly selected from this pool. Rate of
energy consumption for a device is computed based on
the energy required by the processor at the maximum
speed, i.e., 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑖𝑖 = Þ𝐸𝐸𝑝𝑝10 where Þ is a uniform random
number in the range [0.1, 20]. The task set 𝑇𝑇 = {𝜏𝜏1, 𝜏𝜏2,
𝜏𝜏3 … 𝜏𝜏𝑛𝑛} with (𝕞𝕞,𝕜𝕜) utilization U (i.e. ∑𝕞𝕞𝑖𝑖𝑒𝑒𝑖𝑖 𝑝𝑝𝑖𝑖𝕜𝕜𝑖𝑖⁄ a
uniform random number in the range (0, 1]). The
preemption overhead and energy required during
preemption are uniform random number in the range (0,
1] and (0, 100] respectively. Similar type of
considerations where taken in [29]. The other
parameters are summarized in the table 3.

The key parameter, measured for simulation is
energy consumed during one MK_hyperperiod. The
result reported is the average value of results obtained
for hundred task sets. The following section deals with
the variation in energy with component threshold, task
set utilization and device to processor energy
proportionality constant.

 Table 2:

Energy estimation for a MK_Hyperperiod of the task set 𝑇𝑇

for the example 2

 𝒔𝒔𝒂𝒂𝒂𝒂𝟐𝟐

𝒔𝒔𝒂𝒂𝒂𝒂𝟐𝟐

𝒔𝒔𝒂𝒂𝒂𝒂𝟑𝟑

𝒔𝒔𝒂𝒂𝒂𝒂𝟒𝟒

𝒔𝒔𝒂𝒂𝒂𝒂𝟏𝟏

𝒇𝒇𝒇𝒇𝟏𝟏𝟐𝟐

Energy

Remark

25

25

25

25

30

100

56393661

Uncontrolled Preemption technique with DVS and DPD

25

25

25

25

30

75

33473217

Preemption control as suggested by [37]. Reduction in energy consumption is 40.6%.

25

25

25

25

105

35

36900380

Preemption control by increasing the speed of the lower priority job as suggested by
[29].

Phase 2: GBPC

25

25

25

25

30

60

29538942

Performing preemption control at the assigned speed (ASPC). This incapable of
preventing preemption but reduces the response time. Reduction in energy from [37]
11.7% and 47.6% from uncontrolled preemption technique.

25

30

25

25

30

58.3

29126514

Increasing the speed of 𝜏𝜏1
2

based on the ∆𝐸𝐸1
2(𝑠𝑠1

2) = 31757.1,

∆𝐸𝐸2
1(𝑠𝑠2

1) = 91715.
Preemption could not be prevented but the energy consumption is decreased.

25

30

25

25

35

57.3

29219229

∆E1
2(s1

2) = 94063.1,

∆E2
1(s2

1) = 91715. Increasing the speed

of τ2
1

25

30

25

25

37

57

29312320

∆E1
2(s1

2) = 94063.1,

∆E2
1(s2

1) = 92790. Increasing the speed of 𝜏𝜏2
1

25

35

25

25

37

55.8

29092841

∆E1
2(s1

2) = 94063.1, ∆E2
1(s2

1) = 185809. Increasing the speed of τ1
2

25

37

25

25

37

55.5

29076167

∆E1
2(s1

2) = 62511,∆E2
1(s2

1) = 185809. Increasing the speed of τ1
2

25

40

25

25

37

38.7

16205293

∆E1
2(s1

2) = 98151, E2
1(s2

1) = 185809. Increasing the speed of τ1
2. Preemption is

avoided. Reduction in energy consumption by 51.59% from [29, 37] and 71.3% from
uncontrolled preemption is received.

Phase -3: SADS

Delaying job τ1

4

for 10 units

15648423

Reduction of 53.3% from [29, 37] and 72.3% from uncontrolled preemption is
received.

 Effect of component threshold on Energy
consumption:

The value of the threshold of a

component indicates the length of the idle slot for which
the component will consume same energy in active
state as it would do so in sleep state. Thus, as the
threshold increases the requirement for long idle slots
increases in absence of which energy consumption
increases. However, increment in threshold will affect

the energy requirement up to a certain value (length of
the longest idle slot) beyond which no component would
switch to sleep state, so any further increment in the
threshold will not increase the energy consumption of
the system. The effect of the increment in threshold for
frequency independent and dependent components
can be seen in the figure 3 and figure 4 for which the
value

of 𝑈𝑈 = [0.5,0.6]

and Þ = 10.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

22

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

The effect of the variation of the device
threshold is shown in the figure 3. When the device
threshold is lower (0-80) it can be observed that the
energy consumption by GBSADS approach is almost
23% lower than that of the HSPC approach, while this
reduction in the energy consumption is more prominent
(approximately 32%) at higher values of the threshold
range (90-140). Beyond 130 it is constant due to the fact
that at lower threshold value both GBSADS and HSPC
control preemption around the assigned speed. But as
this threshold increases the shorter idle slots become
inadequate to switch the device into sleep state, the
greedy based preemption control in second phase and
delay start done in the third phase of the GBSADS
approach assembles these idle slots efficiently and
hence, provide better opportunity to switch the device
into sleep state. Similar trends are seen for the variation
in the processor threshold (refer figure 4) in which we
get an overall gain of approximately 30%.

EFFECT OF RATE OF PROCESSOR TO DEVICE ENERGY

(Þ)

ON ENERGY CONSUMPTION:

The rate of

energy
consumption by a frequency independent component is a
constant. This constant could be less than the rate of the
energy consumption in the processor (for processor
dominant system

Þ ≤ 1) while for device dominant systems
this would be greater than one. This variation in the ratio
(0.1-10) for both processor and device dominant systems
is observed in the figure 5 for which task sets of utilization
U=[0.5, 0.6]. For lower value of the ratio (0.1-1) processor
dominated system the GBSADS approach saves
approximately 20% of the energy and this saving increase
up to 26% for device dominant systems. A sudden rise in
the energy consumption is observed for a value of Þ = 2

which indicates the dominance of the devices energy
consumption and as more

devices are added to such a
system this rise is even more prominent. At lower level the

DVS approach is more prominent due to the fact the
processor energy consumption is dominant, the HSPC
approach applies DVS and high speed preemption control
which would be inadequate. On the other hand, GBSADS
approach applies the concept of DVS

at three levels (speed assignment, greedy based
preemption control and speed adjustment) thus, a gain of

Table 3: Simulation Parameters
Parameter

Condition

Range

 UTh

Utilization
Threshold

Is assigned

0.01

𝑢𝑢𝑖𝑖

Utilization

If 𝑈𝑈 − ∑𝑢𝑢𝑖𝑖−1 ≥ 𝑈𝑈𝑈𝑈ℎ
 the select a uniform

random number

(0,𝑈𝑈 −
∑𝑢𝑢𝑖𝑖−1]

If 𝑈𝑈 − ∑𝑢𝑢𝑖𝑖−1 < 𝑈𝑈𝑈𝑈ℎ

 then assign

𝑢𝑢𝑖𝑖 = 𝑈𝑈 −
∑𝑢𝑢𝑖𝑖−1

 𝑒𝑒𝑖𝑖

worst case

execution time

select a uniform
random number

(0,100]

𝑝𝑝𝑖𝑖

period

select a uniform
random number

(0,1000]

𝑑𝑑𝑖𝑖

deadline

select a uniform
random number

[𝑒𝑒𝑖𝑖 ,𝑝𝑝𝑖𝑖]

𝑘𝑘𝑖𝑖

Is a random integer
selected uniformly

[1,10]

𝑚𝑚𝑖𝑖

is the number
of mandatory jobs in

𝑘𝑘𝑖𝑖

Assigned a value

⌊𝑢𝑢𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖 𝑒𝑒𝑖𝑖⁄ ⌋

thp

processor
threshold

select a uniform
random number

[0, 200]

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100110120130140

E
ne

rg
y

C
on

su
m

pt
io

n
 →

Device threshold →

Figure 3: Energy consumption Vs. Device
threshold

HSPC GBSADS

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100 110 120

E
ne

rg
y

C
on

su
m

pt
io

n
 →

Processor threshold →

Figure 4: Energy consumption Vs. Processor
threshold

HSPC GBSADS

0

20

40

60

80

100

120

140

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

C
on

su
m

pt
io

n
 →

þ →

Figure 5: Energy consumption Vs. þ
HSPC GBSADS

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

23

M
a
y

20% is received. However, at the higher ratio the device
energy consumption is dominant and hence DVS is less
effective compared to the DPD technique. The GBSADS
approach is able to accumulate the idle slots efficiently as it

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

does delayed start along with speed adjustment while
controlling the preemption based on greedy approach
whereas HSPC only controlled preemption.

EFFECT OF SYSTEM UTILIZATION ON THE ENERGY
CONSUMPTION:

The energy consumption is measured as
the system utilization increases for different values of Þ.
The value of Þ

indicates the dominance of the device
energy consumption on the overall energy consumption
of the system (higher its value more the system is device
dominated). It can be observed from all the following
figures (6, 7 and 8) that when the utilization is high (0.8-
1) then the reduction in the energy consumption is
substantial. This is because for such utilizations the
system is overloaded hence, the speed assignment for
the feasibility in the first phase is at higher speeds. The
HSPC approach does not slow the once assigned
speed while GBSADS approach may reduce the speed
assigned to the out of phase jobs substantially leading
to reduction in the energy consumption. Besides speed
adjustment it also delays the start and controls the
preemption of lower priority jobs to accumulate the idle
slots favoring the sleeping off the components.

EFFECT OF ONLY PROCESSOR ENERGY CONSUMPTION
(WHEN NO DEVICES ARE ATTACHED Þ=0):

When no frequency
independent components are associated with the system
then the effect of the utilization on the system energy
consumption can be seen in the figure 6. For lower
utilization (0.1-0.3) the GBSADS approach consumes
around 18% less energy while this reduction improves up
to around 24% for medium utilizations (0.4-0.7) and still
further up to approximately 30% for higher utilizations. For
lower utilizations the speed assigned by both approaches
in first phase is close to the critical speed and hence,
energy saving by GBSADS is only due to the delayed start
in the third phase which accumulates the fragmented idle
slots and favor the processor to switch into the sleep mode
(or sleep for longer time). For task sets with higher
utilization, the speed assigned to a task in the first phase
are generally higher than its critical speed due to
overloading of the system by both the approaches. For
reducing the energy consumption the HSPC approach the
execution of the preempted jobs at either higher or at the
same assigned speed. Executing preempted jobs at higher

speed of such systems having no devices attached would
be counter productive while execution at the assigned
speed would not incur any reduction in energy. On the
other hand, GBSADS would adjust the speed (may reduce
the assigned speed) taking into the account the thresholds
and the idle slots in the second and the third phase so as

to balance the impact of DVS, DPD and PC techniques.

WHEN THE DEVICE TO PROCESSOR RATE OF ENERGY

CONSUMPTION IS COMPARABLE Þ=1: The effect of the
utilization on the overall energy consumption can be
seen from the figure 7. The trend of the energy
consumption is similar to that observed in the figure 6.
But for higher utilizations the reduction in the energy

consumption is less (approximately 26%) as compared
to 30% in figure 6. This is due to the fact; when higher
speeds are assigned in the phase-1 reducing the
speed by the GBSADS approach increases the
response time of a job which would in turn force the
devices to remain active for longer period and consume
energy hence, lower gain is observed when compared
to system comprising of frequency dependent
components only.

WHEN THE DEVICE TO PROCESSOR RATE OF ENERGY

CONSUMPTION IS TEN TIMES (DEVICE DOMINATED) Þ=10: The
effect of utilizations on the energy consumption of a device

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

co
ns

um
pt

io
n
→

U →

Figure 8: Energy consumption Vs. Utilization
(þ=10)

HSPC GBSADS

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

co
ns

um
pt

io
n
→

U →

Figure 6: Energy consumption Vs. Utilization
(þ=0)

HSPC GBSADS

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

co
ns

um
pt

io
n
→

U →

Figure 7: Energy consumption Vs. Utilization

(þ=1)
HSPC GBSADS

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

24

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

dominated system can be observed in the figure 8 which is
similar to the trend seen in figure 6 and 7 in which at higher
utilizations GBSADS approach performs better than HSPC
approach.

V. Conclusion
In this paper we presented a three phase

scheduling algorithm which minimizes the system
energy consumption for weakly hard real-time system
while maintaining the (𝕞𝕞,𝕜𝕜) guarantee. The system
consists of a DVS processor (capable of operating at
various frequencies) and frequency independent
peripheral devices. We proposed a three phase
scheduling algorithm where in the first phase a mixed
pattern based partitioning is used to determine the
mandatory and optional jobs of a task and assign speed
levels to ensure the feasibility of the task set.

However, the major contribution of the work lays
in the second and third phase which analyses and
refines the first phase schedule at job level. In the
second phase we formulated a greedy based
preemption control technique which adjusted the speed
of the preempted/preempting jobs based on the laxity to
further reduce the energy consumption. The third phase
focused on accumulation of the idle slots through
utilizing the concept of delay start and speed
adjustment. The speed adjustment is a method of
assigning an optimal speed to individual job based on
the availability of idle slot on the either side of the
execution window of a job and the threshold of the
components. While delayed start technique delays the
execution of a job up to its available slack time to
assimilate the idle slots fragmented on the either side of
a job’s execution window. The effectiveness of the
proposed algorithm has been discussed through
examples and extensive simulation results.

The proposed three phase scheduling algorithm
is compared with [29] where the authors have adopted
similar scenario. The simulation results indicate that the
three phase scheduling algorithm consumes
approximately 30% less energy for task set at higher
utilizations (0.8-1) while it is 24% better for lower
utilization systems (0.1-0.7). The reduction in the energy
consumption is 30% for higher values of the threshold of
a component while lesser improvement is observed
approximately 23% for lower threshold value. The
proposed algorithm was targeted for device dominant
systems for which it performed 26% better. However, the
simulations indicate that the approach is valid for
processor dominant systems as well for which an
improvement of about 20% is received. Thus, the
proposed algorithm is capable of performing better in
the system/process energy constrained systems when
the system is overloaded (utilization is high) or the
threshold of the components are high.

References Références Referencias
1. M. Hamdaoui and P. Ramanathan, “A dynamic

priority assignment technique for streams with
(m, k)-firm deadlines,” IEEE Trans. Compute.,
vol. 44, no. 12, pp. 1443–1451, Dec. 1995.

2. D. Moss´e, H. Aydin, B. Childers, and R.
Melhem, “Compiler-Assisted Dynamic Power-
Aware Scheduling for Real-Time Applications”,
Workshop on Compiler and OS for Low Power,
2000.

3. Q. Qiu, Q. Wu and M. Pedram, “Dynamic Power
Management in a Mobile Multimedia System
with Guaranteed Quality-of-Service”, ACM/IEEE
Design Automation Conference, pp. 834-839,
2001.

4. G. Qu and M. Potkonjak, “Power Minimization
Using System-Level partitioning of Applications
with Quality of Service Requirements”,
IEEE/ACM International Conference on
Computer-Aided Design, pp. 343-346, 1999.

5. G. Quan and X. Hu, “Energy Efficient Fixed-
Priority Scheduling for Real-Time Systems on
Variable Voltage Processors”, 38th IEEE/ACM
Design Automation Conference, pp. 828-833,
2001.

6. S. Hua and G. Qu, “Energy-Efficient Dual-
Voltage Soft Real-Time System with (m, k)-Firm
Deadline Guarantee”, CASES’04, Washington,
DC, USA pp 116- 123, September 22–25, 2004.

7. L. Doherty, B. Warneke, B. Boser, and K. Pister,
“ Energy and performance considerations for
smart dust” International Journal of Parallel
Distributed Systems and Networks, 2001.

8. Douglis, F., Krishnan, P., and Marsh,
B.Thwarting, “The power-hungry disk”,
proceedings of the Winter USENIX Conference,
pp. 292-306, 1994.

9. M. A. Viredaz and D. A. Wallach. Power
evaluation of a handheld computer. IEEE Micro,
pp. 66–74, 2003.

10. J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A.
Krishnamurthy, and R.Wang., “Modeling hard-
disk power consumption”, FAST ’03, pp. 217–
230, 2003.

11. L. Niu., G. Quan, “Energy minimization for real
time systems with (m, k)- guarantee” IEEE Tans.
On Very large scale integrated (VLSI) systems,
vol. 14, no. 7 July 2006.

12. M. Weiser, B. Welch, A. Demers and S.
Shenker., “Scheduling for Reduced CPU
energy”, USENIX Symposium on Operating
Systems Design and Implementation, 1994.

13. H. Aydin, V. Devadas, D. Zhu, “System-level
Energy Management for Periodic Real-Time
Tasks”, Proceedings of the 27th IEEE

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

25

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

International Real-Time Systems Symposium
(RTSS'06).

14. E. Bini, G.C. Buttazzo and G. Lipari, “Speed
Modulation in Energy-Aware Real-Time
Systems”, in Proc. of the 17th Euromicro
Conference on Real-Time Systems (ECRTS),
2005.

15. K. Choi, R. Soma and M. Pedram, “Fine-grained
dynamic voltage and frequency scaling for
precise energy and performance trade-off
based on the ratio of off-chip access to on-chip
computation times”, in Proceedings of Design,
Automation and Test in Europe, 2004.

16. K. Seth, A. Anantaraman, F.Mueller and E.
Rotenberg., “FAST: Frequency-Aware Static
Timing Analysis”, in Proc. of the 24th IEEE Real-
Time System Symposium, 2003.

17. X. Huang and A. M. K. Cheng, “Applying
Imprecise Algorithms to Real-Time Image and
Video Transmission”, Real-Time Technology and
Applications Symposium, Chicago, USA pp. 96-
101, 15-17 May 1995.

18. Xiao Chen and Albert Mo Kim Cheng, “An
Imprecise Algorithm for Real-Time Compressed
Image and Video Transmission” Sixth
International Conference on Computer
Communications and Networks, Proceedings,
Las Vegas, NV, USA , pp. 390-397.

19. A. F. Yao, A. Demers, and S. Shenker, “A
scheduling model for reduced CPU energy,” in
Proc. AFCS, pp. 374–382, 1995

20. L. Niu and G. Quan, “Energy-Aware Scheduling
for Real-Time Systems With (m; k)-Guarantee”,
Dept. Comput. Sci. Eng., Univ. South Carolina,
Tech. Rep. TR-2005-005, 2005.

21. G. Bernat and A. Burns, “Combining (n;m)-hard
deadlines and dual priority scheduling,” in Proc.
RTSS, Dec. 1997, pp. 46–57

22. W. Kim, J. Kim, and S. L. Min, “A dynamic
voltage scaling algorithm for dynamic-priority
hard real-time systems using slack analysis,” in
Proc. DATE, pp. 788, 2002

23. S. Saewong and R. Rajkumar, “Practical
Voltage-Scaling for Fixed-Priority Real-time
Systems”, in Proceedings of the IEEE Real-Time
and Embedded Technology and Applications
Symposium (RTAS’03), 2003.

24. Y. Zhang and K. Chakraborty, “An Unified
approach for fault-tolerance and dynamic power
management in fixed-priority real-time
embedded systems”, IEEE Transactions on
Computer- Aided Design of Integrated Circuit
and Systems, Vol. 25, No. 1, January 2006.

25. H. Aydin, R. Melhem, D. Moss´e and P. Mejia-
Alvarez, “Dynamic and Aggressive Power-Aware
Scheduling Techniques for Real-Time Systems”,

in Proceedings of the 22nd IEEE Real-time
Systems Symposium (RTSS’01), 2001.

26. X. Fan, C. Ellis, and A. Lebeck, “The Synergy
between Power aware Memory systems and
Processor Voltage”, in Workshop on Power-
Aware Computing Systems, December 2003.

27. R. Jejurikar and R. Gupta, “Dynamic voltage
scaling for system-wide energy minimization in
real-time embedded systems”, ISLPED 2004.

28. J. Zhuo and C. Chakrabarti, “System level
energy efficient dynamic task scheduling”, DAC,
2005.

29. S. Agrawal, R. S. Yadav, Ranvijay, “A Preemption
Control Technique for System Energy
Minimization of Weakly Hard Real-time
Systems”, SNPD 2008.

30. M. Kim and S. Ha, “Hybrid run-time power
management technique for real-time embedded
system with voltage scalable processor”,
OM’01, pages 11–19, 2001.

31. [31] R. Jejurikar and R. Gupta, “Dynamic
voltage scaling for system-wide energy
minimization in real-time embedded systems”,
ISLPED, 2004.

32. [32] H. Cheng and S. Goddard., “Online
energy-aware i/o device scheduling for hard
real-time systems”, DATE, 2006.

33. P. Rong and M. Pedram. Hierarchical power
management with application to scheduling.
ISLPED, 2005.

34. V. Swaminathan and K. Chakrabarty, “Pruning-
based, energy optimal, deterministic i/o device
scheduling for hard real-time systems”. Trans.
on Embedded Computing Sys., ACM
Transactions on Embedded Computing
Systems, Vol. 4, No. 1, February 2005, Pages
141–167.

35. L. Niu and G. Quan, “System-wide dynamic
power management for multimedia portable
devices”, accepted by IEEE International
Symposium on Multimedia (ISM’06), 2006.

36. L. Niu and G. Quan, “Peripheral-Conscious
Scheduling on Energy Minimization for Weakly
Hard Real-time Systems”, DATE07.

37. Liliana Cucu and Jo¨el Goossens, “Feasibility
Intervals for Multiprocessor Fixed-Priority
Scheduling of Arbitrary deadline Periodic
Systems”, DATE07.

38. Y. H. Lu and G. D. Micheli, “Comparing system-
level power management”, IEEE Design and
Test of Computers, March-April 2001.

39. G. Quan and X. Hu. “Enhanced fixed-priority
scheduling with (m, k)-firm guarantee”. In RTSS,
pages 79–88, 2000.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

26

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4912�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4912�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4912�

©2011 Global Journals Inc. (US)

40. G. Koren and D. Shasha, “Skip-over: Algorithms
and complexity for overloaded systems that
allow skips,” in Proc. RTSS, 1995, p. 110.

41. P. Ramanathan, “Overload management in real-
time control applications using (m; k)-firm
guarantee,” IEEE Trans. Parallel. Distrib. Syst.,
vol. 10, no. 6, pp. 549–559, Jun. 1999.

42. http://www.purplemath.com/modules/drofsign.h
tm

43. R. Jejurikar, C. Pereira, and R. Gupta, “Leakage
aware dynamic voltage scaling for real-time
embedded systems”, in Proc. of the Design
Automation Conf, pp. 275–280, 2004

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

27

M
a
y

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

http://www.purplemath.com/modules/drofsign.htm�
http://www.purplemath.com/modules/drofsign.htm�

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
 V

er
si
on

 I

20

11

28

M
a
y

This page is intentionally left blank

A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

©2011 Global Journals Inc. (US)

	3. A Three Phase Scheduling for System Energy Minimization of

Weakly Hard Real Time Systems
	Authors
	I. Introduction
	II. System Model
	a) Terms Used

	III. Three-phase Energy Minimization

Technique
	IV. Simulation Results
	V. Conclusion
	References Références Referencias

