
  
Global Journal of Computer Science and Technology: C 
Software & Data Engineering 
Volume 14 Issue 2 Version 1.0 Year 2014 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Evaluation the Quality of Software Design by Call Graph based 
Metrics 

          By Sanjeev Kumar Punia, Dr. Anuj Kumar & Amit Sharma      
                                      IIMT College of Engineering, India 

Abstract- The prediction of software defects was introduced to support development and maintenance 
activities to improve the software quality by finding errors early in the software development. It facilitates 
maintenance in terms of effort, time and more importantly the cost prediction for software evolution and 
maintenance activities. 

In this paper, we evaluate the quality related attributes in developed software products. The software 
call graph model is also used for several applications in order to represent and reflect the degree of their 
complexity in terms of understandability, testability and maintainability efforts. The extracted metrics are 
investigated for the evaluated applications in correlation with bugs collected from customers bug reports. 
Those software related bugs are compiled into datasets files to use as an input to a data miner for 
classification, prediction and association analysis. 

Finally, the analysis results is evaluated in terms of finding the correlation between software products 
bugs and call graph based metrics. We find that call graph based metrics are appropriate to detect and 
predict software defects so that the activities of testing and maintenance stages become easier to estimate or 
assess after the product delivery. 

Keywords: software testing, software metrics, coupling metrics, call graph based metrics, defects prediction 
and software maintainability. 

GJCST-C Classification:  K.6.3 

 

EvaluationtheQualityofSoftwareDesignbyCallGraphbasedMetrics 
 

 
 

 

 

 

© 2014. Sanjeev Kumar Punia, Dr. Anuj Kumar & Amit Sharma. This is a research/review paper, distributed under the terms of the 
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all 
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. 
 

Strictly as per the compliance and regulations of:



Evaluation the Quality of Software Design by 
Call Graph based Metrics 

Sanjeev Kumar Punia  α, Dr. Anuj Kumar  σ  & Amit Sharma ρ

 

 

 

 
Keywords: software testing, software metrics, coupling 
metrics, call graph based metrics, defects prediction 
and software maintainability. 

I. Introduction 

he human abilities and creativities play a significant 
role in producing and directing the software 
products in software development life cycle with 

the help of the tools and methodologies. However, 
humans are also the main source of the errors and 
defects that occur in the software and discovered before 
or after the delivery of the product. The production of 
defect free software and projects is impossible. 
However, software developers struggle to keep such 
possible defects at minimum. Finding and fixing the 
defects and errors after delivery usually cost a large 
amount of the project budget and resources specially if 
compared with detecting them earlier. As try to predict 
the defects early is valuable specially if detected before 
the delivery of the software where that can also help the 
project to success in terms of cost and quality. 
 
Author α: IIMT College of Engineering, Greater Noida. 
e-mail: puniyasanjeev@hotmail.com 
Author σ: Accurate Institute of Engineering & Technology, Greater 
Noida. e-mail: Anujkumar74@rediffmail.com 
Author ρ: IIMT College of Engineering, Greater Noida. 
e-mail: Amit.krsharma123@gmail.com 

The coupling metrics play an important role in 
many software development and maintenance activities 
such as effort estimation, improving the quality of the 
software products, test planning and reducing future 
maintenance. These metrics assess the software quality 
by supporting the quality related factors after evaluating 
error proneness, changeability and reusability. The most 
relevant tools are available as independent or the part of 
a development environment to compute the coupling 
metrics statically by tracing possible problems in the 
source code. 

The call graphs metrics represent the 
relationship between the modules and reflect the degree 
of complexity of the software. It also helps to find some 
software metrics such as coupling and cohesion 
metrics. In general, one way to reduce cost through 
defects prediction is by using software metrics. 
Particularly the call graph based metrics is used to 
predict and improve possible problems in software 
design and in coding finally. 

In this research, we tried to evaluate the 
effectiveness and power of call graph based metrics in 
prediction and detection the defects in software 
products. A tool is developed to generate call graph 
attributes and metrics by using open source projects. 
We select three applications as J Edit 4.2, Velocity 1.4 
and Velocity 1.6 based on two factors (i) open source 
projects and (ii) these projects include users bug reports 
for actual evaluation of the software products. This 
paper include, the programmed and evaluated call 
graph based metrics as LOC, Fan In, Fan Out, SGBR 
and IFC. The LOC, Fan In and Fan Out metrics are 
known and popular while SGBR and IFC not so popular 
but after that also we implement in our tool. 

This paper is organized into six sections as 
follows: Section 2 introduces topic and research related 
studies. Section 3 describes the methodology steps. 
Section 4 presents the adopted analysis and evaluation 
measurements. Section 5 shows the conducted results 
of the experiments and finally Section 6 presents the 
conclusion and inference from the paper. 

II. Literature Review 

Many empirical studies used call graph based 
model for developing the derive dependency metrics 
especially code and size metrics. Multiple 
authors/researchers proposed different ways to utilize 

T 

 
 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

  
  
 

  

59

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014   Global Journals Inc.  (US)

Abstract- The prediction of software defects was introduced to 
support development and maintenance activities to improve 
the software quality by finding errors early in the software 
development. It facilitates maintenance in terms of effort, time 
and more importantly the cost prediction for software evolution 
and maintenance activities.

In this paper, we evaluate the quality related 
attributes in developed software products. The software call 
graph model is also used for several applications in order to 
represent and reflect the degree of their complexity in terms of 
understandability, testability and maintainability efforts. The 
extracted metrics are investigated for the evaluated 
applications in correlation with bugs collected from customers 
bug reports. Those software related bugs are compiled into 
datasets files to use as an input to a data miner for 
classification, prediction and association analysis.

Finally, the analysis results is evaluated in terms of 
finding the correlation between software products bugs and 
call graph based metrics. We find that call graph based 
metrics are appropriate to detect and predict software defects 
so that the activities of testing and maintenance stages 
become easier to estimate or assess after the product 
delivery.



call graph based dependency metrics to improve the 
software quality by providing information for defect 
prediction and estimation. We list some related work in 
each step that has taken in our project and developed 
tool in the following sections. 

a) Call Graph Model 
Many researchers studied software modeling 

and found that modeling techniques are grouped into 
broadly two categories as (i) graphical modeling 
techniques and (ii) textual modeling techniques. 
Graphical modeling technique use a diagram with 
named symbols that represent the components, the 
symbols connecting arcs represent the relationship and 
other notations to represent the constrains. Textual 
modeling technique use standardized notations and 
keywords to define major aspects of software product 
call graph. 

J. Dollner and Bohnet et.al. [1] Considered the 
extracting of process call dependencies as one of the 
most important step in the reengineering process. 
Therefore they built a tool based on OINK framework for 
call graph extraction. In addition, the tool also provides a 
set of hierarchal data, call type information methods 
definitions and output this information to impor Table 
formatted file. 

D. Reniers et.al. [2] Made an enhancement in 
hierarchical edge bundling (HEB) technique and named 
candidate visualization (CV) technique in their 
framework. So they build an experiment to compare 
their enhancement hierarchical edge bundling and tulip 
graph visualization framework with several large 
systems like Bison, Mozilla Firefox, OINK and conclude 
that hierarchical edge bundling scheme perform better 
in typical comprehension tasks. 

M. Jahromi and E. Honar et.al. [3] introduced a 
new framework for call graph construction for program 
analysis. They choose ASM and soot a byte code reader 
for their environment to store information about the 
structure of the codes such as classes, methods, files 
and statements. 

They also proposed a framework where three 
algorithms have been implemented for call graph 
construction i.e. CHA, RTA and CTA and finally they 
conclude by an experimental study on a verity of source 
code programs by comparing two byte code reader. 

b) Code Metrics Extraction 
By analyzing both the source code of any 

software and extracting code metrics is considered as 
the main preprocess for the reengineering operation. 
This information provides a clear view about the 
complexities and difficulties of the software as well as 
divides the milestones tasks into phases in order to start 
the reengineering process easily. On the other hand 
many researchers considered the code metrics and the 
system complexity information as a good defect tracker. 

They setup a number of hypothesis related to defect 
probability and code metrics to prove the correlation 
between them but the hottest topics in this research is to 
define the set of metrics that we can considered them 
as the optimal defect predictor. The researchers shows 
many studies to define this set of metrics and try to view 
it's set as the perfect one that give justifications for their 
results. It is also find that code metrics, which plays a 
major role in many research fields and many tools 
deployed to handle extraction using different 
approaches. 

F. Abreu and Baroni et.al. [4] Presented a new 
framework for metrics extraction by modeling the 
extraction data using UML Meta model called FLAME. 
They briefly mentioned the main characteristics of 
FLAME for fact extraction and recommended to use in 
firing a new tool for metrics extraction. The authors 
introduce an approach to formalize the metrics design in 
the optimal way where FLAME functions are used to 
extract well known sets of metrics as MOOD, MOOD2, 
MOOSE, EMOOSE and QMOOD metrics. 

c) Defect Prediction from Source Code Metrics and 
System History 

A number of approaches have been deployed 
for defect prediction based on different criteria and 
information. Some researchers turn to find bugs in 
software code by analyzing software source code and 
compute its complexity. They extracted call graph based 
metrics from source code and used to decide which 
part or module of the software code likely to be 
defected. While other researchers prefer to use the 
system history to decide which part of them has a big 
defect probability especially when the application has 
many releases. They find that the system history is more 
accurate to predict defected parts of the system more 
than the code complexity extraction predict. While some 
studies support the two approaches together and use 
both in finding systems bugs. 

A. Bernstein et.al. [5] compare the influence of 
different metrics used in defect prediction and defect 
prediction densities by using decision tree learners. 
They collected the needed data that is source code 
metrics and bugs report in the experiment from seven 
versions of open source code for Mozilla application. 
They applied J48 algorithm in WEKA data miner on the 
data set and setup a number of experiments to test their 
purposed hypothesis on defect predicting in software 
parts. They conclude that a simple tree learner can 
produce good results with various sets of input data. 

N. Nagappan and T. Ball et.al. [6] introduce a 
new technique for prediction defect density by using 
code churn measures. The idea was drawn with a 
hypothesis that if code changes many times in the 
prerelease version then it also has a big chance to be 
defected in the post release. The authors build an 

 
 

  
  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

60

  
 

(
DDDD

)
Y
e
a
r

20
14

c

© 2014   Global Journals Inc.  (US)

Evaluation the Quality of Software Design by Call Graph based Metrics



experiment on W2K3 release with its service back and 
showed with its result that code churn is a good defect 
predictor. As they noticed that the increase of the code 
churn measures leads to an increase on the defect 
density in any software so they conclude that their 
metrics suit with line of code churned, deleted line of 
code, files churned, churn count and weeks of churn. 

The aim of software developers is to evaluate 
the cost and quality of software before deliver to 
customers so that they can predict and find bugs or 
defects especially for critical systems. 

III. Methodology 

Our methodology consists of six main phases 
as shown in Figure 1.  

 
This begin by phase 1 begin by "implementation 

of metric computing tool" to built a tool that can read 
source code of an application to compute some metrics 
coupling measurements. Phase 2 is "generation of call 
graph model" that utilizes the application model. Phase 
3 is "calculation of call graph based metrics" used to 
compute some call graph based metrics for our 
application model. Phase 4 is "generation of data set" 
used to prepare data set consisted from metrics values 
for each class in application. Phase 5 is "refinement of 
data set with bug report" that assigns each data set 
record with its number of bugs. Finally, phase 6 is 
"Analysis and Evaluation of Data Set using WEKA" used 
for the purpose of evaluating its quality and find the 
correlation between its bug and call graph based 
metrics. 

As the tool focus on extract the call graph 
based metrics so the developed tool generated data set 
does not contain bug attribute for each class. This 
phase is responsible to make some refinement on the 
comma separated values comma separate value (CSV) 
file.  

Firstly, the tool automatically fill the bug attribute 
filed for each class by providing its previous comma 
separate value file for the same application under 

investigation and contains the bug report for each class. 
Then by mapping the name of classes between our 
comma separate value file and the previous worked 
comma separate value file. The source of previous 
comma separate value file gained from promise data 
repository which contains several data sets in comma 
separated values or attribute relation file (ARF) format. 
These files are created and prepared by researchers 
those worked at the topic of software defects prediction. 
In our research, we use bug attribute for the files which 
relate to the applications in our experiments.  

IV. Analysis and Evaluation 

Before you begin to format your paper, first 
write and save the content as a separate text file. Keep 
your text and graphic files separate until after the text 
has been formatted and styled. Do not use hard tabs 
and limit use of hard returns to only one return at the 
end of a paragraph. Do not add any kind of pagination 
anywhere in the paper.  

After refine the generated comma separate 
value file that represent the data set of our research with 
bug attribute then it is ready to analyze and evaluate 
using WEKA 3.7.5 tool as data miner. Here we apply 
J48, logistic model trees (LMT) and support vector 
machine (SMO) classifier algorithms. The decision tree 
algorithms are chosen as we want to look at classifiers 
that were easy to understand and validate the 
correlation between call graph based metrics and bugs. 

a) Evaluation Measures 
The evaluation process of our testing tool 

depends on five matrices in term of call graph based 
metrics measurement. The five matrices are line of code 
(LOC), Fan In, Fan Out, call graph based ranking 
(CGBR) and information flow complexity (IFC) as shown 
in Table 1.  

Table 1 : Measurement of call graph based metrics 

Metric Type Measurement of Metrics 

LOC 
No of execu Table and non-commented lines 
of code for each function 

Fan In No of calling function list 
Fan Out No of called function list 
CGBR (1-d) + d *∑i CGBR(Ti) C(Ti) 
IFC IFC(M)=LOC(M)+ [Fan In(M)*Fan Out(M)]2 

The metrics value for each type (LOC, Fan in, 
Fan Out, CGBR and IRC) depends on the functions that 
extracted from the application under investigation by 
which the higher metric value type achieves a higher 
complexity value. The values of metrics related to class 
level are computed by find the summation of all 
corresponded metrics to function level. For example: if 
we have 10 included functions at such class and each 
function has Fan In metrics value equal 1 then the class 
has Fan In metrics value equal the summation of all Fan 

 

Implementation 
of metrics 

computing tool  

 
Generation of 

call graph model  

 

Calculation of 
call graph 

based metrics  

 

Analysis and 
evaluation of 

data set  

 

Refinement of 
data set with bug 

report  

 
Generation of 

data set  

Phase 1  Phase 2  Phase 3  

Phase 6  Phase 5  Phase 4  

Figure 1  :   Methodology  Diagram  

 
 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

  
  
 

  

61

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014   Global Journals Inc.  (US)

Evaluation the Quality of Software Design by Call Graph based Metrics



In metrics values related to functions of the class which 
equal to 10. 

The five metrics we use in this research are 
related to size of the software or coupling and 
dependency between the components and functions of 
the application under investigation. LOC metric value 
represents the number of execu Table and non-
commented lines of code. FanIn metric value for such 
function represents the number of function calling for a 
given function. Fan Out metric value for such function 
represents the number of function being called by a 
given function. CGBR metric depends on the page 
ranking algorithm that used by almost all the search 
engines where the ranking methodology is adopted to 
functions of the software.  

This metric hypothesis that more frequently 
used functions and less frequently used modules should 
have different defects and bugs characteristic. In the 
equation used to compute CGBR value, value of d 
represents damping factor and refer to probability of 
such function being called or used and can be 
computed as the ratio of actual function calls to all 
possible function calls. CGBR (Ti) is the call graph 
based rank of module Ti which Call for given function. 
C(Ti) is the number of outbound calls of function Ti. IFC 
metric represents the measurement of the total level of 
information flow for a given function. The value of this 
type of metric depends on the values of metrics LOC, 
Fan In and Fan Out for the given function. 

b) Principle Component Analysis using SPSS 
The purpose of this analysis is to show the 

correlate metrics in developed tool. The PCA analysis for 
call graph based metrics in developed tool results in 2 
orthogonal dimension components were identified from 
5 call graph based metrics that have Eigen value more 
than 1 as shown in Table 2. The variance of Eigen 
values data set explained by the PC in percent and the 
cumulative variance are provided for each PC where 
values above 0.6 are set in boldface. The 2 PCs capture 
89.963% of the variance in the data set. 

Table 2 : Rotated component matrix for developed tool 

 
Component 

1 2 
Eigenvalue 3.475 1.063 

% of Variance 69.768 18.672 
Cumulative % 68.362 89.235 

CGBR 0.923 - 0.112 
LOC 0.905 -0.131 
IFC -0.036 0.923 

FanIn 0.836 0.132 
FanOut 0.963 0.021 

 
The PCs are interpreted as follows: 
• PC1: CBGR, LOC, FanIn and FanOut are coupling 

and size metrics. We have size and coupling 

metrics in this dimension. This shows that there are 
classes with high internal methods i.e. methods 
defined in the class and external methods i.e. 
methods called by the class. This means coupling is 
related to number of methods and attributes in the 
class. 

 •
 

PC2:
 
IFC measure the total level of information flow 

of a module and reflect the degree of flow 
complexity among classes. 

 
c)

 
Experiments

 At the first step, we collect the source code of 
the applications for the study i.e. JEdit 4.2, Velocity 1.4 
and Velocity 1.6 application. We enter the source code 
for each application to a developed C# tool in order to 
generate call graph model for each application. The 
developed tool computes the call graph based metrics 
for each extracted function. Then compute the same 
metrics to classes and output the results into comma 
separate value file that represent the data set to be 
tested. The next step is refining the data set with bug 
report related to each application under investigation. 

 Finally, evaluate the value of the metrics in 
terms of bug and defect detection the format of the data 
set should be ARRF file as the classifier algorithms such 
as J48 and M5P algorithm accepts only the files with 
that format. The accuracy is calculated with tenfold 
cross validation. The attributes of the file listed in the 
Figure 2.

 
@attribute “Number” “numeric” 
@attribute “LOC” “numeric”  
@attribute “Fan In” “numeric” 
@attribute “Fan Out” “numeric” 
@attribute “CGBR” “numeric”  
@attribute “IFC” “numeric”  

Figure 2 : Data set attributes 

The attribute bug is classified into three 
categories based on the number of bugs for each class 
as shown in Table 3. 

Table 3 :
 

Bugs categories
 

   
Bug 

Categories  Metric Matrix  

One  VL = 0 error / L = 1 error / M = 2 error / 
H = 3 errors / VH => 3 errors  

Two  L = 0 error / M = 1-2 errors / H => 2 
errors  

Three  False = no error / True = error exist  

The experiments result shows that there is an 
obvious correlation between the call graphs based 
metrics, bugs and defects of the application. The result 
of all the nine experiments is summarizing by Table 4.

  

 
 

  
  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

62

  
 

(
DDDD

)
Y
e
a
r

20
14

c

© 2014   Global Journals Inc.  (US)

Evaluation the Quality of Software Design by Call Graph based Metrics



Table 4 : The experiments results summary in terms of 
bug categories 

Bug 
Category 

Application 
Name 

Category 1 Category 2 Category 3 

JEdit 4.2 81.34 % 80.84 % 86.93 % 
Velocity 1.4 60.67 % 72.07 % 80.04 % 
Velocity 1.6 66.59 % 67.36 % 73.83 % 

The correlation between bug and the call graph 
based metrics will be high when we split the bug class 
into small number of categories, like category three that 
split the bug class into two categories. So we take 
category three as criteria to compare the J48 classifier 
on the applications under investigation output to other 
classifier output such as logistic model trees (LMT) and 
support vector machine (SMO) classifier algorithm. 

The results of three classifier algorithms have 
approximately similar values and we conclude that 
correlation is very high between the call graph metrics 
and bugs of the application under investigation as 
shown in Table 5. 

Table 5 : The experiments result summary in terms of 
algorithm types 

Classifier 
Algorithm 

Application 
Name 

J84 LMT  SMO  

J Edit 4.2 86.142 % 84.926 %  82.547 %  
Velocity 1.4 80.928 % 80.364 %  75.723 %  
Velocity 1.6 72.152 % 71.029 %  66.487 %  

Finally, we make some normalization to our 
data set by excluding the non public functions such as 
private and protected functions from the computation of 
the call graph metrics for the applications under 
investigation and the results of analysis is shown in 
Table 6.

 

Table 6 :
 
The experiments results summary data set 
excluding non-public functions

 

Classifier 
Algorithm

 

Application 
Name

 
J84

 
LMT

 
SMO

 

JEdit 4.2
 

86.924 %
 

85.196 %
 

83.537 %
 

Velocity 1.4
 

85.918 %
 

88.364 %
 

75.783 %
 

Velocity 1.6
 

72.125 %
 

70.709 %
 

67.467 %
 

The results of three classifier algorithm are 
approximately have similar values where that leads us to 
conclude that correlation is very high between the call 
graph metrics that computed without non public 
functions and bugs of the application under 
investigation as shown in Table 6.

 

After comparing the results of Table 5 and Table 
6, we show that excluding the non-public functions such 

as private and protected functions in order to compute 
the call graph based metrics for the classes of the 
application under investigation will raise the percentage 
of the supposed correlation between call graphs based 
metrics and bugs. 

V. Conclusion 

In this paper, we present the effectiveness and 
the power of call graph based metrics in prediction and 
detection the defects in software through our developed 
tool. We choose three applications J Edit 4.2, Velocity 
1.4 and Velocity 1.6. We extract the call graph based 
metrics such LOC, Fan In, Fan Out, SGBR and IFC from 
the selected applications and evaluate their correlation 
according to many categories of bugs for the 
applications. By all these experiments we discover that 
how much the extracted call graph metrics are 
necessary and important in lightening the expensive and 
time consumer obstacles and problems of software that 
may arise after delivery phase. Therefore, it will be more 
effective to predict them and find their solutions earlier 
before they occur at any time. 

The results of our research improve the 
hypothesis of correlation between call graph based 
metrics and bugs in software design. The highest 
percentage of correlation was shown in results of the 
analysis J Edit 4.2 application using J48 algorithm 
classifier with metric correlation 86%, while the metric 
correlation resulted in analysis velocity application with 
its versions 1.4 and 1.6 was 85% and 72% respectively. 
In addition, the results show that correlation between 
bugs and the call graph based metrics will be high when 
we split the bug class into small number. In addition, the 
results show that excluding non-public functions such 
as private and protected functions in order to compute 
the call graph based metrics for the classes of the 
application under investigation will raise the percentage 
of the supposed correlation. 

By this approach, we proved that call based 
metrics are appropriate criteria for helping the 
maintenance and developing stages to be more 
effective and less costly at the same time for the 
systems those are very complex and hardly to 
understand. 

References Références Referencias 

1.
 

J. Dollner and J. Bohnet “Visual exploration of 
function call graphs for feature location in complex 
software systems” Proceedings of 2010 ACM 
symposium on Software visualization vol. 1 (2010)

 

pp. 95 -
 
104. 

 

2.
 

D. Reniers, A. Telea, O. Ersoy and H. Hoogendorp 
“Extraction and visualization of call dependencies 
for large C/C++ code bases: A comparative study” 
2011 7th IEEE International Workshop on Visualizing 

 
 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

  
  
 

  

63

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014   Global Journals Inc.  (US)

Evaluation the Quality of Software Design by Call Graph based Metrics



Software for Understanding and Analysis (2011) pp. 
81 - 88. 

3. M. Jahromi and E. Honar “A framework for call 
graph construction” Student thesis At School of 
Computer Science, Physics and Mathematics 
(2012). 

4. F. B. Abreu and A. L. Baroni “A formal library for 
aiding metrics extraction” 8th International 
Workshop on Object Oriented Reengineering (2013) 
Dramstandt, Germany. 

5. A. Bernstein, M. Pinzger and P. Knab “Predicting 
defect densities in source code files with decision 
tree learners” Proceedings of the 2011 international 
workshop on Mining software repositories (2011) 
pp. 22 - 23, Shanghai, China.  

6. T. Ball and N. Nagappan “Use of relative code 
churn measures to predict system defect density” 
Proceedings of the 37th international conference on 
Software engineering (2012) pp. 284 - 292, St. 
Louis, MO, USA.  

7. S. Usmani and N. Azeem “Defect prediction leads 
to high quality product” Journal of Software 
Engineering and Applications, vol. 4 (2011) pp. 639 
- 645.  

8. A. Khare, P. Batra and M. Kaur “Static analysis and 
run-time coupling metrics” International Journal of 
Information Technology and Knowledge 
Management, vol. 6 (2013) pp. 707 - 710.  

9. P. Darbyshire and W. Prins “Call graph based 
program analysis with .Net” In Procs of the IRMA 
International Conference (2012)  pp. 794 - 798. 

 
 

 
 

  
  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

64

  
 

(
DDDD

)
Y
e
a
r

20
14

c

© 2014   Global Journals Inc.  (US)

Evaluation the Quality of Software Design by Call Graph based Metrics


	Evaluation the Quality of Software Design by Call Graph based Metrics
	Authors
	Keywords
	I. Introduction
	II. Literature Review
	a) Call Graph Model
	b) Code Metrics Extraction
	c) Defect Prediction from Source Code Metrics andSystem History

	III. Methodology
	IV. Analysis and Evaluation
	a) Evaluation Measures
	b) Principle Component Analysis using SPSS
	c)Experiments

	V. Conclusion
	References Références Referencias



