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Towards The Solution of Variants of Vehicle 
Routing Problem  

Pawan Jindal

Abstract - Some of the problems that are used extensively in 
real life are NP complete problems. There is no any algorithm 
which can give the optimal solution to NP complete problems 
in the polynomial time in the worst case. So researchers are 
applying their best efforts to design the approximation 
algorithms for these NP complete problems. Approximation 
algorithm gives the solution of a particular problem, which is 
close to the optimal solution of that problem. In this paper, a 
study on variants of vehicle routing problem is being done 
along with the difference in the approximation ratios of 
different approximation algorithms as being given by 
researchers and it is found that Researchers are continuously 
applying their best efforts to design new approximation 
algorithms which have better approximation ratio as compared 
to the previously existing algorithms. 
Keywords : Approximation algorithms, Vehicle Routing 
problem with time widows, NP completeness. 

I. INTRODUCTION 

ransportation supports most of the social and 
economic activities. The annual cost of excess 
travel in U.S.A. has been estimated approximately 

45 billion USD [68] and the turnover of transportation of 
goods in Europe is approximately 168 billion USD per 
year. In United Kingdom, France and Denmark 
transportation represents approximately 15%, 9% and 
15% of national expenditures respectively [70]. It is well 
known fact that the vehicle routing problem is a 
combinatorial optimization and integer programming 
problem in which service to finite number of customers 
with a fleet of vehicles is being done. Vehicle routing 
problem was proposed by Dantzig and Ramser in 1959. 
Vehicle routing problem is an important optimization 
problem in the fields of distribution, transportation, and 
logistics. In Vehicle Routing problem, goods have to be 
delivered to the customers who have placed orders for 
such goods in such a way so that the total cost of the 
delivering of goods to the customers can be minimized. 
In VRP each and every customer has a given demand 
and no any vehicles can service more customers than 
its predefined capacity. Many algorithms have been 
designed by researchers for searching for good 
solutions to the problem, but no any polynomial time 
algorithms have been designed which can give the 
exact solution of Vehicle Routing problem with time 
windows in the polynomial time  in the worst case. There 
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are several variations of the vehicle

 

routing problems. In 

Vehicle Routing Problem with Pickup and Delivery, a
 large number of goods have to be moved from certain 

pickup locations to
 
other delivery locations and the goal 

is to find optimal routes for vehicles to
 
visit the pickup 

and drop-off locations so that the cost of delivering the
 goods to the different locations can be minimmized. In 

Vehicle Routing
 

Problem with LIFO pinciple, a large 
number of goods have to be moved

 
from certain pickup 

locations to other delivery locations and the goal is to
 find optimal routes for vehicles to visit the pickup and 

drop-off locations so
 

that the cost of delivering the 
goods to the different locations can be

 
minimmized with 

the restriction of the item being delivered must be that
 item most recently picked up. The benefit of this scheme 

over the previous
 
scheme is the reduction of the loading 

and unloading times at delivery
 
locations because there 

is
 

no need to temporarily unload items. In Vehicle
 Routing Problem with Time Windows, there are n 

numbers of cities. Each
 
and every city has a particular 

time windows [R (v), D (v)]. Where R (v)
 
represents the 

releasing time for a particular vertex and D(v) represents 
the

 
deadline for a particular vertex and the goal is to visit 

the maximum number
 

of cities with in their time 
windows. Time windows are when they can be

 considered non biding for penalty cost. Time windows 
are called hard when

 
they cannot be violated, i.e. if any 

vehicle reaches to a particular city too
 
early so it must 

wait unless and until the time windows opens and the
 vehicle is not allowed to arrive late. In Capacitated 

Vehicle Routing
 

Problem, the vehicles have limited 
capacity of the goods

 
that must be

 
delivered. In 

Capacitated Vehicle Routing Problem with time
 
windows

 [R(v),D(v)], the vehicles have limited capacity of the 
goods that

 
must be delivered. The most important 

application of VPRTW includes
 

deliveries to 
supermarkets, industrial refuse collection, routing of 
school bus,

 
security patrol services, urban newspaper 

distribution etc. The Vehicle
 
Routing Problem with Time 

Windows has already been studied in the
 
literature of 

Operations Research ([1, 10]). Different heuristics [9, 17, 
18,19] like Simulated Annealing, local search, Genetic 
algorithms, cutting

 
plane and branch and bound 

methods [20, 14, 16] have been proposed to get
 
the 

optimal solution of this problem. For general graphs, 
when there are a

 
constant number of different time 

windows Chekuri and Kumar [8] gave a
 
constant-factor 
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approximation to solve vehicle routing problem with time
windows. Capacitated Vehicle Routing Problem (CVRP) 
is the homogeneous VRP. In Multiple Depot VRP 



 

                                       

 
 

 

(MDVRP) customers get their deliveries from several

 

depots. In VRP with Time Windows [71] each and every 
customer has

 

time window (R[v], D[v]) where D[v] 
represents the deadline for a particular

 

customer while 
R[v] represents the releasing time for a particular 
customer

 

and the goal is to visit the maximum number 
of customers in their time

 

windows

 

(R[v], D[v]). In 
Stochastic VRP (SVRP) any customer may have a

 

random behavior. In Periodic VRP (PVRP) delivery to the 
customer is being

 

done in some days. In Split Delivery 
VRP (SDVRP) several vehicles serve a

 

customer. In the 
split delivery vehicle routing problem (SDVRP) there is 
no

 

any restriction of visiting each and every customer 
exactly visited once.

 

Additionally, the demand of each and every 
customer may be greater than

 

the capacity of the 
vehicles.

 

It is well known fact that the SDVRP is NP-hard

 

problem, even under restricted conditions on the costs, 
when each and every

 

vehicle have a capacity greater 
than two, But it can be solved in the time

 

complexity of 
polynomial time when the vehicles have a maximum 
capacity

 

of two. The cost saving that which can be 
obtained by allowing split

 

deliveries can be up to 50% of 
the cost of the optimal solution of the VRP.

 

The variant of the VRP[71] in which the demand 
of a customer may be

 

greater than the vehicle capacity, 
but vehicle has to serve every customer

 

minimum 
number of the possible time. The cost saving which can 
be

 

obtained by allowing more than the minimum 
number of required visits to

 

each and every customer to 
be served by vehicle can be again up to 50%.

 

Simple 
heuristics that serve the customers with demands 
greater than the

 

vehicle capacity by full load out-and-
back trips until the demands become

 

less than the 
vehicle capacity may be quite far from the optimal 
solution.

 

Three heuristic methods [71] have been already 
proposed for the solution of

 

the SDVRP: The local 
search,

 

a simple and effective tabu search algorithm

 

and a sophisticated heuristic which uses the information 
collected during

 

the tabu search, builds promising 
routes and solves MILP models to decide

 

which routes 
to use and how to serve the customers through those 
routes to

 

obtain the solution which is close to the 
optimal solution. The heuristics will

 

be compared on a 
set of benchmark instances.

 

In VRP with Backhauls (VRPB) vehicle must pick

 

something up from the

 

customer after all deliveries are 
done to the customers. VRP with

 

Backhauls

 

(VRPB) is 
also known as the linehaul-backhaul problem which is

 

an extension of the Capacitated VRP (CVRP) where the 
customer set is

 

partitioned into two subsets. The first 
subset contains the linehaul customers;

 

each requires a 
given quantity of product which has to be delivered. The

 

second subset contains the backhaul customers, where 
a given quantity of

 

inbound product must be picked up. 
This customer partition is extremely

 

frequent in practical 

situations. Grocery industry is a common example,

 

where supermarkets and shops are the linehaul 
customers and grocery

 

suppliers are the backhaul 
customers. It has been widely recognized that in

 

this 
mixed distribution—collection context a significant 
saving in

 

transportation costs can be achieved by 
visiting backhaul customers in

 

distribution routes. More 
precisely, the VRPB

 

[71] can be stated as the

 

problem 
of determining a set of vehicle routes visiting all 
customers, and (a)

 

each vehicle performs exactly one 
route; (b) each route starts as well as

 

finishes at the 
depot; (c) for each route the total load associated with 
linehaul

 

and backhaul customers should never exceed, 
separately, the vehicle

 

capacity; (d) on each route the 
backhaul customers, are visited after all

 

linehaul 
customers; and (e) the total distance traveled by the 
vehicles to

 

serve the customers is minimized. The 
constraint (d) is practically

 

motivated by the fact that 
vehicles are rear loaded which proves that the onboard

 

load rearrangement required by a mixed service is 
difficult to carry out

 

at customer locations. The most 
important reason is that, in many

 

applications, line haul 
customers have a higher service priority as compared

 

to 
backhaul customers. In VRP with Pick-Ups and 
Deliveries (VRPPD) the

 

vehicle picks something up and 
delivers it to the customer.

 

II.

 

VEHICLE ROUTING PROBLEM WITH 
TIME WINDOWS
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return at the latest at time bn+1. It is assumed that q, ai, 
bi,di, cij,tij are positive integers. It is also assumed that 
the triangle inequality [72] is satisfied for both cij and tij. 
There are two sets of decision variables x and s. For 

≠j, i≠n+1, j≠0 and each vehicleeach edge (I,j) where i
k we define xijk as

If V[72] represents set of vehicles and all 
vehicles are considered to be identical. C represents set 
of customers. G=(N, A) represents directed graph 
where N represents the set of vertices of graph while E 
represents the set of edges of graph. This particular 
directed graph consists of |C|+2 number of vertices, 
where customers are denoted 1,2,3,…………,n and the 
depot is represented by the vertex “0”(the starting
depot) and the vertex “n+1”(the returning depot). N is 
the set of vertices. There is no edge ending at the vertex 
“0” or originating from the vertex “n+1”. cij ( where i≠j) 
represents the cost of traveling from the vertex I to the 
vertex j. tij ( where i≠j) represents the service time at the 
customer i. Each vehicle has a capacity q and each 
customer i has a demand di. Each and every customer 
has a time window [ai, bi] and a vehicle must arrive at 
the customer before bi. If any vehicle arrives to the 
customer before the time windows opens, that vehicle 
has to be wait until ai to service the customer. The time 
windows for both depots are assumed to be identical to
[a0,b0] which represents the scheduling horizon. The 
vehicle cannot leave the depot before a0 and must 



 

                                     

  

 
 

  
 

 
   

 
 
 
 
 

The decision variable sik

 

is defined for each and 
vertex i and each vehicle k

 

and denoted the time when 
the vehicle k starts to service the customer i.

 

When the 
vehicle k does not service to the customer i, sik has no 
meaning

 

and consequently its value is considered 
irrelevant. As we have assumed

 

a0=0 and therefore 
s0k=0 for all k.

 

The goal in the case of VRPTW is to 
design a set of routes that minimizes

 

the total cost, such 
that

 

1, if vehicle k drives directly from vertex i to the 
vertex

  

(a)

 

Each customer is being served by vehicle exactly 
once.

 

(b)

 

Every route starts at the vertex 0 and ends at vertex 
n+1.

 

(c)

 

The time windows of the customers and capacity 
constraints of the

 

vehicles are being observed carefully.

 

The above informal definition of VRPTW can be 
stated mathematically as a

 

multicommodity network flow 
problem with time windows and the capacity

 

constraints:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main goal of the objective function (1) is to 
minimize the total travel

 

cost. The constraint (2) ensures 
that each customer is visited exactly once

 

while 
constraint (3) ensures that a vehicle can only be loaded 
up to its

 

capacity. Equations 4 indicated that each and 
every vehicle must leave the

 

depot 0. Equation 5 

indicates that when a vehicle arrives at a customer it 
must leave for another destination. Equation 6 indicates 
that all vehicles must arrive at the depot n+1. Inequality 
(7) indicates the relationship between the departure time 
of vehicle from the customer and its immediate 
successor. Constraint (8) indicates the observation of 
time windows. Integrality constraints are shown by (9). 
The model for the representation of VRPTW can also 
incorporate a constraint giving an upper bound on the 
number of vehicles, as is the case in Desrosiers, 
Dumas, Solomon and Soumis [59]. 

III. VEHICLE ROUTING PROBLEM WITH 
TIME WINDOWS IS NP COMPLETE 

PROBLEM 

Sorting algorithms like selection sort, bubble 
sort, insertion sort are known as quadratic sorting 
because these algorithms have time complexity of O(n2) 
in the worst case where n is the size of input. Sorting 
algorithms like counting sort, radix sort and bucket sort 
have linear time complexity in the worst case So these 
algorithms are known as sorting in linear time. It is well 
known fact that all problems cannot be solved in 
polynomial time in the worst case. For example, Turing's 
famous "Halting Problem," which cannot be solved by 
any computer, no matter how much time is provided. 
Those problems that can be solved, but in time O(nk) for 
any constant k are known as tractable problems or easy 
problems. For example sorting algorithms like selection 
sort, bubble sort, insertion sort, counting sort, radix sort 
and bucket sort can give sorted output in the time 
complexity of polynomial time so sorting problems are 
tractable problems or easy problems. Those problems 
that can not be solved, in polynomial time O(nk) for any 
constant k but they require super-polynomial time for 
their executions are known as intractable problems or 
hard problems. No polynomial-time algorithm has yet 
been discovered for an NP-complete problem which can 
solve the problem in the polynomial time in the worst 
case nor anyone has been able to prove that no 
polynomial-time algorithm can exist for any one of NP-
complete problems. So P ≠ NP question has been one 
of the deepest, most perplexing open research 
problems in theoretical computer science since it was 
first proposed in 1971. 

The class P consists of those problems which 
can be solved in polynomial time in the worst case. 
More specifically, they are problems that can be solved 
in time O(nk) for some constant k, where n is the size of 
the input to the problem. Problems like sorting problem, 
searching problems are in class P. The class NP 
consists of those problems that are "verifiable" in 
polynomial time. If a "certificate" of a solution is being 
given, then we could verify that the certificate is correct 
in time polynomial in the size of the input to the problem. 
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Towards The Solution of Variants of Vehicle Routing Problem

xijk ={1, if vehicle k drives directly from vertex i to the 
vertex
0, otherwise.

min∑ ∑ ∑cijxijk such that         (1)

k∈V i∈N j∈N

∑ ∑xijk =1 ∀ i∈C          (2)

k∈V j∈N 
∑ di∑xijk ≤q ∀ k∈ V      (3)

i∈C         j∈N
∑x0jk =1 ∀ k∈V             (4)

j∈N
∑ xihk -∑xhjk =0  ∀ h∈C, ∀ k∈V,   (5)

i∈N j∈N
∑xi,n+1,k =1 ∀ k∈V                     (6)

j∈N
xijk (sik+ tij-sjk)≤0 ∀ i,j∈N,  ∀ k∈V                     (7)

ai≤sik≤bi ∀ i,∈N,  ∀ k∈V                                   (8)

xijk ∈{0,1} ∀ i,j∈N,  ∀ k∈V                                          (9)

Hamiltonian-cycle problem is in class NP because In
Hamiltonian-cycle problem, directed graph G = (V, E) is 
being given, and then certificate of this problem would 



 

                                       

 

 

be a sequence v1, v2, v3, vn

 

of |V|

 

vertices. It is easy to 
check in polynomial time whether these set of vertices

 

would be lead to the Hamiltonian cycle or not. Also, 3-
CNF satisfiability

 

problem is in class NP. It is well known 
fact that any problem in class P will

 

also in class NP, 
because if a problem is in P then we can solve it in

 

polynomial time without even being given a certificate. 
Any problem will be

 

lie in the class NPC-and we refer to 
it as being NP-complete-if the problem

 

is in NP and is 
as "hard" as any problem in NP. The first NP complete

 

problem is the circuit-satisfiability problem, in which we 
are given a

 

Boolean combinational circuit which is being 
consists of AND, OR, and

 

NOT gates and the question 
is to know whether there is any set of Boolean

 

inputs to 
this circuit that causes its output to be 1.It is well known 
fact that

 

the concept of NP-complete was firstly 
introduced by Stephen Cook in 1971

 

in a paper entitled 
“The complexity of theorem-proving procedures” on

 

pages 151-158 of the Proceedings of the 3rd Annual 
ACM Symposium on

 

Theory of Computing, Although the 
term NP-complete did not appear

 

anywhere in his 
paper. At that conference, there was a debate among 
the

 

computer researchers about whether NP-complete 
problems could be solved

 

in polynomial time on a 
deterministic Turing machine or not. At that time,

 

John 
Hopcroft brought everyone at the conference to a 
consensus that the

 

question of whether NP-complete 
problems are solvable in polynomial time

 

or not must be 
put off to be solved at some later time ,since nobody 
had any

 

formal proofs for their claims. No any scientist 
has yet been able to prove

 

conclusively whether NP-
complete problems are solvable in polynomial time

 

or 
not. Also The Clay Mathematics Institute is offering a 
US$1 million

 

reward to any researcher who has

 

a formal 
proof that P=NP or that P≠NP.

 

Researchers are 
continuously doing hard work in this field to give the 
formal

 

prove of either P=NP or P≠NP but did not 
achieve success in this field till

 

date. Also In the 
celebrated Cook-Levin theorem, Cook proved that the

 

Boolean satisfiability problem is NP-complete problem. 
In 1972, Richard

 

Karp proved that several other 
problems are also NP-complete; So it shows

 

that there 
is a class of NP-complete problems. Satisfiability,0-1 
Integer

 

Programming, Clique, Set ,Vertex Cover, Set 
Covering, Feedback Node Set

 

,Feedback Arc Set, 
Directed Hamilton Circuit Undirected Hamilton Circuit

 

,Satisfiability With At Most 3 Literals Per Clause, 
Chromatic Number

 

,Cover, Exact, Hitting, Steiner Tree, 
3-Dimensional Matching Knapsack

 

(Karp's definition of 
Knapsack is closer to Subset sum), Job Sequencing,

 

Partition Max Cut. After then, thousands of other 
problems have been shown

 

to be NP-complete 
problems by reductions from other problems previously

 

shown to be NP-complete. There is

 

no any algorithm 
which can solve

 

Vehicle Routing Problem with time 
windows in the polynomial time in the

 

worst case. It is 
well known fact that Vehicle Routing Problem with time

 

windows is NP complete problem. So researchers are 
continuously applying

 

their best efforts to give 
approximation algorithm for Vehicle Routing

 

Problem 
with time windows. As it well known fact that 
approximation

 

algorithms give the approximation result 
which is close to the optimal value

 

to a particular 
problem. Most of the problems of practical significance 
are

 

NP-complete but we cannot avoid them. There are 
three approaches to

 

getting around NP-completeness of 
the problems. First, if the size of inputs

 

is small, an 
algorithm which has exponential running time may be a

 

satisfactory

 

algorithm to solve a problem. Second, we 
may isolate those

 

special cases that are solvable in 
polynomial time. Third, we can find out the

 

solution 
which is close to the optimal solution of the problem and 
that

 

solution can be easily found out with the help of the 
polynomial time

 

approximation algorithm. Suppose 
there is an optimization problem in

 

which each potential 
solution has a positive cost. It is well known fact that

 

the 
optimization problem can be divided in the two parts. 
The maximization

 

problem and the minimization 
problem. In maximization problem, we

 

want to maximize 
the value of output to a problem and in minimization

 

problem we want to minimize the value of output.

 

If the 
size of the input of a problem is n. Let C* be the cost as 
being obtained

 

by optimal solution of a problem and C 
is the cost as being obtained by

 

approximation 
algorithm

 

[49]. Then the approximation ratio ρ

 

(n) is 
defined

 

as

 

Maximum

   

The definitions of approximation ratio and of ρ

 

(n)-approximation algorithm

 

apply for both minimization 
and maximization problems. It is well known

 

fact that for 
a maximization problem, 0 < C ≤ C*and the ratio C*/C 
gives

 

the ratio by which the cost of optimization 
algorithm is larger than that of

 

the cost of the 
approximate solution. Also, for a minimization problem, 
0 <

 

C* ≤ C, and the ratio C/C* gives the ratio by which 
the cost of the

 

approximate solution is greater than the 
cost of an optimal solution. Since all

 

solutions are 
assumed to have positive cost, these ratios are always 
well

 

defined. Also the approximation ratio of an 
approximation algorithm

 

[49] is

 

never less than 1. For 
some problems, there are polynomial-time

 

approximation algorithms which have small constant 
approximation ratios,

 

but for other problems, the best 
known polynomial-time approximation

 

algorithms have 
approximation ratios that grow as functions of the size of

 

input of the problem.

 

An approximation scheme for an optimization 
problem

 

[49] is defined as an

 

approximation algorithm 
which takes as input an instance of the problem,

 

along 
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Towards The Solution of Variants of Vehicle Routing Problem

with a value ε>0 such that for any fixed, the scheme is 
a (1 + ε)- approximation algorithm. An approximation 
Scheme is said to be a polynomial-time approximation 
scheme if and only if for any fixed ε > 0, the scheme 
runs in polynomial time in the size n of its input instance.

ρ (n).*, C*/C) <= (C/ C



 

                                     

  

 
 

  
 

IV.

 

COMPARISON OF APPROXIMATION 
ALGORITHMS FOR VEHICLE ROUTING 

PROBLEM

 

Arkin, Mitchell and Narasimhan

 

[26] gave first 
non-trivial (2+ε)

 

approximation algorithm for 
orienteering points in the Euclidean plane. A.

 

Blum, S. 
Chawla, D. Karger, T. Lane, A. Meyerson, and M. 
Minkoff

 

[6] gave

 

the first approximation algorithm with a 
ratio of 4 for points in arbitrary

 

metric spaces. After then 
N. Bansal, A. Blum., S. Chawla, and A. Meyerson

 

[24] 
designed a new approximation algorithm for orienteering 
problem

 

which improved this ratio to 3. A related 
problem to the orienteering

 

problem is the minimum 
excess problem as being defined in [6]. In [6] the

 

pseudo code for the orienteering problem depends 
upon the pseudo code of

 

the min-excess problem. Also 
the min-excess problem can be approximated

 

using 
algorithms for the k-stroll problem. In the k-stroll 
problem, the goal is

 

to find a minimum length walk from 
source vertex s to target vertex t that

 

visits at least k 
vertices. It is well known fact that k-stroll problem and 
the

 

orienteering problem are equivalent to each other in 
terms of exact

 

solvability because in both of these 
problems, the mission is to find the

 

minimum length 
path from the source vertex s to the destination vertex t

 

which covers maximum number of distinct vertices. The 
results in [6, 24]

 

are based on existing approximation 
algorithms for k-stroll in undirected

 

graphs. N. Bansal, A. 
Blum, S. Chawla and A. Meyerson.[24] gave

 

approximation algorithm for Deadline-TSP which has the 
time complexity of

 

O(logn) and they gave approximation 
algorithm for Vehicle Routing

 

problem with time 
windows which has time complexity of O (log n) .

 

Further they gave a bicriteria approximation algorithm for 
Deadline-TSP as

 

well as for Vehicle Routing problem 
with time windows. If ε

 

> 0, their

 

bicriteria 
approximation algorithm produces a log

 

(1/ε) 
approximation, while

 

deadlines exceeds by a factor of 
(1+ε). C. Chekuri, N. Korula, and M. Pal

 

[42] designed 
(2+ε) approximation for orienteering in undirected 
graphs,

 

which improves upon the 3-approximation of 
[24]. C. Chekuri, N. Korula,

 

and M. Pal [42] designed an 
improved O (log  OPT) approximation for

 

orienteering in 
directed graphs, where OPT<= n is the number of 
vertices

 

visited by an optimal solution which improves 
over the previously result.

 

Further it was being proved 
that for the time-window problem, an O

 

(log

 

OPT) 
approximation can be easily achieved even for directed 
graphs if the

 

algorithm is allowed quasi-polynomial time. 

 
 

 

If D(v) represents the deadline for a

 

particular vertex v 
and R(v) represents the releasing time for a particular

 

vertex v. Let L(v) = D(v) −

 

R(v) denotes the length of the 

 
 

 

directed graphs. C. Chekuri and N. Korula. Designed

 

an 
O(alog

 

Lmax) approximation when R(v) and D(v) both 
are integer valued for each v

 

and they designed an O(a 
max{log OPT, log Lmax/Lmin }) approximation.

 

They 
also designed an O(log Lmax/Lmin) approximation 
when there is no

 

starting vertex and terminating vertex is 
being defined. Early surveys of

 

solution techniques for 
the VRPTW[67] can be found in Golden and Assad

 

[57], 
Desrochers et al. [58], and Chiang & Russell[66]. 
Desrosiers et al. [59]

 

and Cordeau et al.[60] gave exact 
solution techniques for VRPTW. The

 

complete 
explanation of these exact techniques can be found in 
Larsen [61]

 

and Cook and Rich [62]. Researchers 
designed different approximation

 

algorithms for VRPTW 
based on different designing techniques like

 

Dynamic 
programming, Simulated Annealing etc. Fleischmann 
[63] and

 

Taillard et al.[64] have used heuristic for VRP 
without time windows. In

 

Taillard et al. [64], have 
designed solutions to the classical vehicle routing

 

problem by using a TS heuristic. The routes which are 
obtained combine to

 

produce workdays for the vehicles 
by solving a bin packing problem, an idea

 

which is 
previously introduced in Fleischmann [63]. Compbell 
and

 

Savelsbergh [65] has reported about insertion 
heuristics which can

 

efficiently handle different types of 
constraints including time windows and

 

multiple uses of 
vehicles. Compbell and Savelsbergh [65] introduced the

 

home delivery problem which is the variant of Vehicle

 

Routing problem and

 

it is more closely related to real-
world applications. Current VRPTW

 

heuristics can be 
categorized as follows: (i) construction heuristics, (ii)

 

improvement heuristics and (iii) meta-heuristics. 
Construction heuristics are

 

sequential or parallel 
algorithms which aims at designing initial solutions to

 

routing problems that can be easily improved upon by 
meta-heuristics or

 

improvement heuristics. Sequential 
algorithms are being used to build a

 

route for each 
vehicle, one after another with the help of decision 
functions

 

for the selection of the customer which has to 
be inserted in the route and the

 

insertion position within 
the route. Parallel algorithms build the routes for all

 

vehicles in parallel by using a pre-computed estimate of 
the number of

 

routes.

 

V.

 

CONCLUSIONS
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As it has been already discussed that the best known 
polynomial time approximation ratios for Vehicle Routing 
problem with time windows are O (log OPT) for 
undirected graphs and O (log   OPT) in directed graphs. 

In this paper, a study on variants of vehicle 
routing problem is being done along with the difference 
in the approximation ratios of approximation algorithm 
as being given by researchers and it is found that 
Researchers are continuously applying their best efforts 
to design new approximation algorithms which have 
better approximation ratio as compared to the
previously existing approximation algorithms. 
Researchers are proposing new heuristics for variants of 
Vehicle Routing problems.

2

2

2

4

time-window for the vertex v and let Lmax = maxv L(v) 
and Lmin = minvL(v). Let a be the known approximation 
ratio for orienteering problem. As a = O (log2OPT)for 
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