
The Evaluation of Network Performance and CPU Utilization1

during Transfer between Virtual Machines2

Dr. Igli Tafa1 and Elinda Kajo Mece23

1 Polytechnic University of Tirana4

Received: 16 June 2011 Accepted: 8 July 2011 Published: 21 July 20115

6

Abstract7

The aim of this paper is to test the performance of network communication between virtual8

machines during the live migration while a controlled failure occurs. Also we want to test the9

CPU utilization between the virtual machines in different hosts and to make a comparison10

with the live migration in different physical nodes. We want to introduce a script in C++11

which will improve the performance of migration during the failure controller phase. Another12

script is built to test the CPU utilization on host computers when memory utilization is13

increased or decreased. We have used Httperf benchmark to test this script. Requests are sent14

from client machine to server machine with IPs of C class located in different hosts. These15

requests are some files in C which execute a multiplication of 2 square matrices with range 5,16

at the moment they arrive in the destination node. We have used Para-virtualization17

approach (Xen-Hypervisor), because it gives more flexibility and tolerance to researchers.18

19

Index terms— Live migration, Network Communication, CPU Utilization, Controller Phase, Hypervisor.20

1 INTRODUCTION21

ive Migration is one of the most important tools in Virtual Technology. It means that data can be transferred22
from one virtual machine to others, while there are working. Virtual Machine is above the Hypervisor. In our23
paper we have used Xen-Hypervisor, which operates above the bare hardware. Host Operating System on the24
bare hardware is called Dom0 and it is a privileged zone. Above Xen can be located the Guest Operating System,25
it is called DomU, and is built above the Hypervisor.26

Xen can support a lot of virtual machines and every virtual machine has it‘s own dedicated virtual memory.27
Xen offers para-virtualization approach, as ESX_Server does, localized between Full Virtualization and OS28
virtualization and offers more flexibility and tolerance for researchers. Virtualization offers some advantages such29
as: Flexibility, High Scalability, good utilization of the Hardware, Safety etc, but on the other hand it has the30
disadvantage of delays. In this paper we have studied live migration between virtual machines in Author ? ?31
? ? : Polytechnic University of Tirana ,Information Technology Faculty ,Computer Engineering Department.32
E-mails : itafaj@gmail.com , e_kajo@yahoo.com , hakikpaci@gmail.com, axhuvani@yahoo.com different hosts.33
We have tested the performance of the system by using a C script which multiplies two square matrices. At34
first all the calculations are performed between 2 virtual machines in different hosts and then between 2 physical35
machines. Of course we should take in consideration the interface of network communication.36

To monitor live migration process we have used heartbeat tool. We can improve the performance of live37
migration by modifying a script in Heartbeat tool. By using this tool we can verify and precaution the failures.38
In this way if a virtual machine fails, then the transfer of the virtual machine’s data into another virtual machine39
can be safe. Heartbeat tool can help us to monitor the CPU and Memory Utilization in host computers. Httperf40
tool generates messages (in our case the message is the script in C) with different size (by calling a script which41
dynamically changes the size of the memory used) and rate from one machine to another by offering different42
values of CPU and Memory Utilization.43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

5 SOFTWARE INSTALLED FOR THE EXPERIMENTAL PHASE

We propose and implement a script in heartbeat tool which offers a better performance than Xen in the live44
migration between virtual machines in different hosts. Then we evaluate the performance between nodes. All45
these nodes create a cluster. This paper is organized as follows. In the second section is introduced the Related46
works. The third section is the Pre-Experimental Phase. In the forth section is implemented a Script, in the47
fifth is presented the Experimental Phase and in the sixth section are given the Conclusions and Future Works.48
At the end are listed the References.49

2 II.50

3 RELATED WORKS51

In [1] based on administrator specified limits.The performance evaluation indicates that tool effectively enforce52
performance isolation for a variety of workloads and configurations.53

In [3] is described the construction of a general and transparent high availability service that allows existing,54
unmodified software to be protected from the failure of the physical machine on which it runs. Remus provides an55
extremely high degree of fault tolerance, to the point that a running system can transparently continue execution56
on an alternate physical host in the face of failure with only seconds of downtime, while completely preserving57
host state such as active network connections. They created an approach which encapsulates protected software58
in a virtual machine, asynchronously propagates changed state to a backup host at frequencies as high as forty59
times a second, and uses speculative execution to concurrently run the active VM slightly ahead of the replicated60
system state. In [4] is described a lightweight software mechanism for migrating virtual machines with direct61
hardware access.62

They based their solution on shadow drivers, an agent in the guest OS kernel that efficiently captures and63
restores the state of a device driver. On the source machine, the shadow driver monitors the state of the driver64
and device. After migration, the shadow driver uses this information to configure a driver for the corresponding65
device on the destination machine. Shadow driver migration requires a migration downtime similar to the66
driver initialization time, short enough to avoid disrupting active TCP connections. The performance overhead,67
compared to direct hardware access, is negligible and is much lower than using a virtual NIC. In [5] is designed68
and implemented a continual migration strategy for virtual machines to achieve automatic failure recovery. By69
continually and transparently propagating virtual machine’s state to a backup host via live migration techniques,70
trivial applications encapsulated in the virtual machine can be recovered from hardware failures with minimal71
downtime while no modifications are required.They show that virtual machine in a continual migration system can72
be recovered in less than one second after a failure is detected, while performance impact to the protected virtual73
machine can be reduced to 30%. In [6] is evaluated the performance of several virtual machine technologies in the74
context of HPC. A fundamental requirement of current high performance workloads is that both CPU and I/O75
must be highly efficient for tasks Such as MPI jobs. This asks two virtual machine monitors, OpenVZ and KVM,76
specifically focusing on I/O throughput. Reference [7] presents the reduction of the virtualization overhead and77
achieves the co-existence of performance and manageability through VM technologies. They are focused on I/O78
virtualization, designing an experimental VM-based computing framework, and addressing performance issues at79
levels Of the system software stack. They propose high performance VM migration with Remote Direct Memory80
Access (RDMA), which drastically reduces the VM management cost. Based on these references we want to test81
the CPU performance between virtual machines in different nodes, the network performance while a controller82
failure occurs and the impact of this failure During the file transferation.83

4 III.84

5 SOFTWARE INSTALLED FOR THE EXPERIMENTAL85

PHASE86

The system that we want to test is not complex and expensive, thus it is not a persistent system, nevertheless87
this is not a problem for our tests.88

We are using 4 PCs with x86 architecture, each of them has 2 GB RAM and 2 intefaces Gigabit. Three89
computers are the nodes of cluster and the forth is used as a shared storage. We have used a computer as90
a shared storage because we couldn‘t find a real one. This is associated with 2 problems, the first one is the91
decrease of the performance compared to SAN (Storage Area Network) and the second is that we have no backup92
because our shared storage can‘t offer RAID technology over data since we are using a single disk. Nevertheless,93
security and backup are not our aims. All the nodes can communicate together by a Gigabit Switch which offers94
a good performance. To create cluster nodes can exchange UDP packets between them. This is a condition of95
the Heartbeat software. Thus we create a second LAN which is dedicated only for the communication between96
nodes.97

At first we have configured common disk. In this common disk we can storage the images of different Virtual98
Machines in order to access it from all nodes. We have used the forth computer for this purpose and have99
configured iSCSI protocol. It is known as a target computer and the third remaining computer are known100
as initiators. Previously we have configured the target computer and then the nodes. We have used CentOS101

2

5.6 which includes iSCSI protocol. While configuring iSCSI protocol we have assigned the path of the fourth102
computer’s hard disk as a shared storage. We have assigned this computer as a server by using the command103
yast2 iscsi-server. Than we have tested the configuration by using the command cat/proc/net/iet/ volume. It104
must give as a reply the volume name of the hard disk. Afterward we have configured the other three nodes. In all105
the nodes we have installed CentOS 5.6. All the nodes are configured as client computers by using the command106
yast2 isci-client. We can choose setup option service at the moment of computer’s boot. Each computer has got107
it‘s own class C IP. Heartbeat should be installed and configured in each of computer except the fourth one by108
using the command yast2 heartbeat .109

All the nodes can communicate with each other by dedicated lines using UDP protocol. The last configuration110
step is the copy configuration of Heartbeat111

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines file112
to all nodes by editing /etc/hosts, /usr/lib/Heart beat/ha_propogate and /etc/init.d/heartbeat start.113

6 Fig.1 : The graphic of network114

To configure and install Xen we have used yast2 xen command and after that we have setup 2 virtual machines115
above each host. The first virtual machine is a WindowsXp and the second one is Ubuntu 10.10 Desktop. Each116
virtual machine is configured by it‘s own parameters.117

7 IV. THE IMPLEMENTATION OF A SCRIPT118

We have evaluated only the tests according to the controlled failure. We have evaluated: the CPU performance119
in Virtual Machines, the effect of a controlled failure in the network performance. Below is given an algorithm120
on how Heartbeat works:121

1. Shutdown node 0, this is a controlled failure. 2. At this moment heartbeat notices all the nodes around122
for this situation and presents the virtual machine that has failed. We want to modify the init.d script to give123
the possibility of live migration between virtual machines. This script will return the stop execution code to the124
heartbeat while the virtual machines continue the execution. So heartbeat will suppose that the virtual machines125
are stopped, but in reality they work. It will execute init.d start script and assign the destination nodes. At this126
moment starts the live migration of virtual machines between nodes. At the start moment no virtual machine is127
executed so we should take in consideration the setup of virtual machines. We implement in C++ a start script128
by using the follow steps with virtual machine x0 as an example.129

? X0 is executed on node 1.130
? Send a broadcast messages and migrate x0 to node2. ? Start the migration phase.131
? Locate xo to node 2.132
This process supports just a command ”MIGRATE VIRTUAL MACHINE”. If we want to use this test widely133

it should be improved in reliability and time execution.134
V.135

8 EXPERIMENTAL PHASE136

? CPU performance during the live migration. ? The evaluation of network performance during a physical node137
failure.138

9 a) CPU performance by increasing and decreasing Memory139

Utilization140

For each call of the increase-handler function, the memory of Server increases with 10 MB. The IP address of x0141
is 192.168.1.1 and of x2 is 192.168.1.2. In x2 is installed XAMP. From x0 we call 5 times the x2 virtual machine142
by using the command http://192. 168. 1.2/increase_mem of benchmark Httperf so the memory used by x2 will143
increase up to 50 MB. As a sample we are using a script in C which multiplies 2 square144

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines145
matrices with dimensions 5. So this benchmark should manage the CPU consumption in the Physical host during146
the dynamic utilization of memory. In the same way if we call http://192.168.1.2/decreas_mem , the virtual147
memory in x2 would decrease with 10 MB per time. We evaluate Response time by MemAccess Benchmark. We148
have presented all the results in table 1:149

Global Journal of Computer Science and Technology Volume XI Issue XIII Version I 2011 August First we150
will evaluate the CPU performance. Thus we should test the CPU activities by increasing and decreasing the151
utilization of the memory in virtual machines. We are using two nodes. At the first one is located x0 vm which is152
the client computer with Ubuntu 10.10 desktop installed on it and in host 2 is located the x2 server computer with153
WinXP. In this computer we have installed XAMP 1.7 version. In apache 2.2.16 into the Web-server machine we154
have included memory_balloon.c module. This module will serve as a tool to increase and decrease the memory155
utilization of the virtual machines. Previously we are located at /etc/ apache2/apache.conf , then we have to156
install a tool: tool-sin apxs2 and compile it by command apxs2-c-I-a memory_balloon.c. We can configure test157
file in /etc/ apache2/httpd.conf as multithreading process.158

3

11 VI. CONCLUSION AND FUTURE WORK

10 b) Evaluation of the network performance during a failure159

The main aim of Xen during live migration of virtual machine from one to another one is to minimize the160
interrupted services. Referred to the above algorithm, initially the virtual machine is available in the source161
node, but it can decrease the network performance because it utilizes some bandwidth. Then, the virtual machine162
crosses over the network, so it is not available. Finally the virtual machine is executed in destination node. To163
test the network performance we are referred to figure ??. Initially we will test the response time before, during164
and after the migration from node 1 to node 2. So from the shared storage computer we will send the ICMP165
packets towards virtual machines by using the command: ping -c 3000 -I 0.01 x0.166

In 30 seconds we will transmit 3000 ICMP packets. After this command, we will evaluate the round trip time167
from the virtual machine to the shared storage machine and vice versa. During 30 seconds of experiment we168
want to simulate the controlled failure of x0 virtual machine. This failure will give the possibility of migration169
from node1 to node2. The failure will be accomplished after the execution of a script in /etc/init.d/heartbeat170
stop. So we will evaluate the network response time during the migration as shown in table ??. All the results171
are evaluated by some network tools but most significantly by Net-Flow and PacketTrap tool.172

Table ?? : The affect of a controlled failure in the round trip time, when we have modified the script. In173
the above tables we have presented the effect of live migration into the round trip time of ICMP packet. In the174
table 3 the migration process between sec 18 and 21 has affected in the increase of the response time to 1 ms. It175
has happened because of the controlled failure. The situation is localized in 0,5 ms after the sec 21. For inertia176
reasons it takes few time to stabilize from 0,5ms to 0,25 ms. Moreover if we analyze tables 4, the round trip time177
increases to 1,3 ms. The reason is that the modified script offers a better performance.178

11 VI. CONCLUSION AND FUTURE WORK179

The performance of live migration between different physical hosts can be improved significantly if nodes don’t180
stop their services. It can be accomplished by including a script on the heartbeat tool. The time duration of181
live migration from one physical host to another one is very important and it should be as small as possible. If182
we refer to table 3 and table 4 we conclude that the inclusion of our script in heartbeat tool decreases the round183
trip time when a controlled failure occurs from 1,3 ms to 1 ms. 1 2

Figure 1:

1

Figure 2: Table 1 :

2

Figure 3: Table 2 :

4

4

The Memory Utilization in
Appache DomU2 Response time CPU Consuming
10 MB 0,046 ms 44 %
20 MB 0,050 ms 44 %
30 MB 0,067 ms 44 %
40 MB 0,099 ms 44 %
50 MB 0,141 ms 44 %

0-18 sec: Time before x0
virtual machine failure

0,25
ms

Memory Utilization in
Appache DomU2 Response time CPU Consuming
10 MB 0,022 ms 41 %
20 MB 0,036 ms 41 %
30 MB 0,047 ms 41 %
40 MB 0,081 ms 41 %
50 MB 0,110 ms 41 %

Figure 4: Table 4 :

Time duration Round Trip Time for packet stream
Time duration Round Trip Time for packet stream

Figure 5:

5

11 VI. CONCLUSION AND FUTURE WORK

1© 2011 Global Journals Inc. (US)
2August

6

.1 August

.1 August184

mentioned above the reason is that the inclusion of the hypervisor introduces an additive time. This additive185
time corresponds to the CPU consuming. In table 2 CPU consuming is just 41% (41% < 44 %) because of the186
absence of hypervisor that means our script has improved the CPU utilization. In the future we want to test the187
performance of CPU utilization, Memory Utilization with Pre-copy and Post-Copy [8] iteration in the WAN.188

[”brendan Cully et al.] Geoffrey ”brendan Cully , Dutch Lefebvre , Mike Meyer , Feeley . High Availability via189
Asynchronous Virtual Machine Replication, (Remus) Andrew Warfield_Department of Computer Science190
The University of British Columbia191

[”nathan Regola] ”nathan Regola . 46556 Jean-Christophe Ducom Center for Research Computing 124 ITC Bldg,192
p. 46556. Center for Research Computing 111 ITC Bldg, Univ. of Notre Dame Notre Dame ; Univ. of Notre193
Dame Notre Dame194

[Asim Kadav” Live Migration of Direct-Access Devices] Asim Kadav” Live Migration of Direct-Access Devices,195

[Diwaker Gupta1, Ludmila Cherkasova2, Rob Gardner2, and Amin Vahdat University of California, an Diego, CA 92122, USA Hewlett-Packard Laboratories” Enforcing Performance Isolation across Virtual Machines in Xen]196
Diwaker Gupta1, Ludmila Cherkasova2, Rob Gardner2, and Amin Vahdat University of California, an Diego,197
CA 92122, USA Hewlett-Packard Laboratories” Enforcing Performance Isolation across Virtual Machines in198
Xen, www.cc.iitd.ernet.in/misc/cloud/hypervisor_performance.pdf2199

[”wenchao Cui et al.] Enhancing Reliability for Virtual Machines via Continual Migration, Dianfu ”wenchao Cui200
, Tianyu Ma , Wo . Qin Li School of Computer Science and Engineering Beihang University Beijing 100191201

[Huang et al.] ‘High Performance Network I/O in virtual machines over modern interconnects’. ”wei Huang , M202
Sc , Tech . Changsha, 410081” VM-based Architecture for Network Monitoring and Analysis, Zhoujun Li11203
School of Computer Science, Beihang University, Beijing, 1000832 School of Mathematics and Computer204
Science, Hunan Normal University (Qiang Li1,2, Qinfen Hao1, Limin Xiao1)205

[Michael et al.] Post-Copy Live Migration of Virtual Machines, R Michael , Umesh Hines , Kartik Deshpande ,206
Gopalan .207

7

www.cc.iitd.ernet.in/misc/cloud/hypervisor_performance.pdf2

