
© 2011. Igli Tafa, Elinda Kajo, Elma Zanaj, Aleksandër Xhuvani.This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 13 Version 1.0 August 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

The Evaluation of Network Performance and CPU Utilization
during Transfer between Virtual Machines

By Igli Tafa, Elinda Kajo, Elma Zanaj, Aleksandër Xhuvani

Polytechnic University of Tirana

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines

Strictly as per the compliance and regulations of:

Keywords : Live migration, Network Communication, CPU Utilization, Controller Phase, Hypervisor.

GJCST Classification :

Abstract - The aim of this paper is to test the performance of network communication between
virtual machines during the live migration while a controlled failure occurs. Also we want to test
the CPU utilization between the virtual machines in different hosts and to make a comparison
with the live migration in different physical nodes. We want to introduce a script in C++ which
will improve the performance of migration during the failure controller phase. Another script is
built to test the CPU utilization on host computers when memory utilization is increased or
decreased. We have used Httperf benchmark to test this script. Requests are sent from client
machine to server machine with IPs of C class located in different hosts. These requests are
some files in C which execute a multiplication of 2 square matrices with range 5, at the moment
they arrive in the destination node. We have used Para-virtualization approach (Xen-Hypervisor),
because it gives more flexibility and tolerance to researchers.

D.4.8, C.4, D.2.8, I.6

The Evaluation of Network Performance and
CPU Utilization

during Transfer between

Virtual

Machines

Igli Tafaα, Elinda KajoΩ, Elma Zanaj β, Aleksandër Xhuvaniψ

Abstract

: The aim of this paper is to test the performance of
network communication between virtual machines during the

live migration while a controlled failure occurs. Also we want to
test the CPU utilization between the virtual machines in

different hosts and to make a comparison with

the live
migration in different physical nodes. We want to introduce a
script

in C++ which will improve the performance of migration
during the failure controller phase. Another script is built to test

the CPU utilization on host computers when memory utilization
is increased or decreased. We have used Httperf benchmark

to test this script. Requests are sent from client machine to
server machine with IPs of C class located in different hosts.

These requests are some files in C which execute a
multiplication of 2 square matrices with range 5, at the
moment they

arrive in the destination node. We have used
Para-virtualization approach (Xen-Hypervisor), because it
gives more

flexibility and tolerance to researchers.

 I.

INTRODUCTION

 ive Migration is one of the most important tools in

Virtual Technology. It means that data can be
transferred

from one virtual machine to others,
while there are

working. Virtual Machine is above the
Hypervisor. In our

paper we have used Xen-Hypervisor,
which operates

above the bare hardware. Host
Operating System on the

bare hardware is called Dom0
and it is a privileged zone.

Above Xen can be located
the Guest Operating System, it

is called DomU, and is
built above the Hypervisor.

Xen can support a lot of virtual machines and

every

virtual machine has it`s own dedicated virtual
memory.

Xen offers para-virtualization approach, as
ESX_Server

does, localized between Full Virtualization
and OS

virtualization and offers more flexibility and
tolerance for

researchers. Virtualization offers some
advantages such

as: Flexibility, High Scalability, good
utilization of the

Hardware, Safety etc, but on the other
hand it has the

disadvantage of delays. In this paper we

have

studied live

migration between virtual

machines

in

Author α

Ω β

ψ

: Polytechnic University of Tirana ,Information Technology

Faculty ,Computer Engineering Department.

E-mails : itafaj@gmail.com

, e_kajo@yahoo.com

,

hakikpaci@gmail.com, axhuvani@yahoo.com

different

hosts.

We have tested the performance of the
system by using a

C script which multiplies two square
matrices. At first all

the calculations are

performed

between 2 virtual

machines in different hosts and then
between 2 physical

machines. Of course we should take
in consideration the

interface of network communication.
To monitor live

migration process we have used
heartbeat tool. We can

improve the performance of live
migration by modifying

a script in Heartbeat tool. By
using this tool we can

verify and precaution the failures.
In this way if a virtual

machine fails, then the transfer of
the virtual machine’s

data into another virtual machine
can be safe. Heartbeat

tool can help us to monitor the
CPU and Memory

Utilization in host computers. Httperf
tool generates

messages (in our case the message is
the script in C) with

different size (by calling a script
which dynamically

changes the size of the memory
used) and rate from one

machine to another by offering

different values of CPU

and Memory Utilization.

We propose and implement a script in heart-

beat tool

which offers a better performance than Xen in
the live

migration between virtual machines in different
hosts.

Then we evaluate the

performance between

nodes. All

these nodes create a cluster.

This paper is
organized as follows. In the second section

is
introduced the Related works. The third section is the

Pre-Experimental Phase. In the forth section is

implemented a Script, in the fifth is presented the

Experimental Phase and in the sixth section are given
the

Conclusions and Future Works. At the end are listed
the

References.

II.

RELATED WORKS

In [1] are shown three types of virtualization and

components of infrastructure virtualization. In [2] is

presented the design and evaluation of a set of
primitives

implemented in Xen. XenMon tool accurately
measures

per-VM resource consumption, including the
work done

on behalf of a particular VM in Xen’s driver
domains and

SEDF-DC scheduler accounts for
aggregate VM resource

consumption in allocating CPU
[2]. So the ShareGuard

tools limits the total amount of
resources consumed in

privileged and driver domains

L

© 2011 Global Journals Inc. (US)

15

Keywords : Live migration, Network Communication,
CPU Utilization, Controller Phase, Hypervisor.

based on administrator specified limits.The performance
evaluation indicates that tool effectively enforce
performance isolation for a variety of workloads and
configurations.

In [3] is described the construction of a general
and transparent high availability service that allows

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
II
I
V
er
si
on

 I

20

11
A
ug

us
t

existing,

unmodified software to be protected from the
failure of

the physical machine on which it runs. Remus
provides

an extremely high degree of fault tolerance, to
the point

that a running system can transparently
continue

execution on an alternate physical host in the
face of

failure with only seconds of downtime, while
completely

preserving host state such as active network
connections.

They created an approach which

encapsulates protected

software in a virtual machine,
asynchronously propagates

changed state to a backup
host at frequencies as high as

forty times a second, and
uses speculative execution to

concurrently run the active
VM slightly ahead of the

replicated system state. In [4] is
described a lightweight

software mechanism for
migrating virtual machines with

direct hardware access.
They based their solution on

shadow drivers, an agent in
the guest OS kernel that

efficiently captures and
restores the state of a device

driver. On the source
machine, the shadow driver

monitors the state of the
driver and device. After

migration, the shadow driver
uses this information to

configure a driver for the
corresponding device on the

destination machine.
Shadow driver migration requires a

migration downtime
similar to the driver initialization

time, short enough to
avoid disrupting active TCP

connections. The
performance overhead, compared to

direct hardware
access, is negligible and is much lower

than using a
virtual NIC. In [5] is designed and

implemented a
continual migration strategy for virtual

machines to
achieve automatic failure recovery. By

continually and
transparently propagating virtual

machine’s state to a
backup host via live migration

techniques, trivial
applications encapsulated in the virtual

machine can be
recovered from hardware failures with

minimal downtime
while no modifications are required.They show that
virtual machine in a continual migration

system can be
recovered in less than one second after a

failure is
detected, while performance impact to the

protected
virtual machine can be reduced to 30%. In [6]

is
evaluated the performance of several virtual machine

technologies in the context of HPC. A fundamental

requirement of current high performance workloads is

that both CPU and I/O must be highly efficient for tasks

Such

as MPI jobs. This asks two virtual machine

monitors, OpenVZ and KVM, specifically focusing on

I/O
throughput. Reference [7]

presents the reduction of

the
virtualization overhead and achieves the co-existence

of
performance and manageability through VM

technologies. They are focused on I/O virtualization,

designing an experimental VM-based computing

framework, and addressing performance issues at levels

Of

the system software stack. They propose high

performance VM migration with Remote Direct Memory

Access (RDMA), which drastically reduces the VM

management cost. Based

on these references we want
to

test the CPU performance between virtual machines
in

different nodes, the network performance while a

controller failure occurs and the impact of this failure

During

the file transferation.

III.

SOFTWARE INSTALLED FOR THE

EXPERIMENTAL PHASE

The system that we want to test is not complex
and

expensive, thus

it is not a persistent system,
nevertheless

this is not a problem for our tests.

We are using 4 PCs with x86 architecture, each
of them

has 2 GB RAM and 2 intefaces

Gigabit. Three
computers

are the nodes of cluster and the forth is used
as a shared

storage. We have used a computer as a
shared storage

because we couldn`t find a real one.
This is associated

with 2 problems, the first one is the
decrease of the

performance compared to SAN
(Storage Area Network)

and the second is that we have
no backup because our

shared storage can`t offer RAID
technology over data

since we are using a single disk.
Nevertheless, security

and backup are not our aims. All
the nodes can

communicate together by a Gigabit
Switch which offers a

good performance. To create
cluster nodes

can

exchange UDP packets between
them. This is a condition

of the Heartbeat software. Thus
we create a second LAN

which is dedicated only for the
communication between

nodes.

At first we have configured common disk. In this

common disk we can storage the images of different

Virtual Machines in order to access it from all nodes. We

have used the forth computer for this purpose and have

configured iSCSI

protocol. It is known as a target

computer and the third remaining computer are known
as

initiators. Previously we have configured the target

computer and then the nodes. We have used CentOS
5.6

which includes iSCSI protocol. While configuring
iSCSI

protocol we have assigned the path of the fourth

computer‘s

hard disk as a shared storage. We have

assigned this computer as a server by using the

command yast2 iscsi-server. Than we have tested the

configuration by using the command cat/proc/net/iet/

volume. It must give as a reply the volume

name of the
hard disk. Afterward we have configured the

other three
nodes. In all the nodes we have installed

CentOS 5.6. All
the nodes are configured as client

computers by using
the command yast2 isci-client. We

can choose setup
option service at the moment of

computer’s boot. Each
computer has got it`s own class C

IP. Heartbeat should
be installed and configured in each

of computer except
the fourth one by using the command

yast2 heartbeat .
All the nodes can communicate with

each other by
dedicated lines using UDP protocol. The

last
configuration step is the copy configuration of

Heartbeat

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines

© 2011 Global Journals Inc. (US)

16

file to all nodes by editing /etc/hosts, /usr/lib/Heart
beat/ha_propogate and /etc/init.d/heartbeat start.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
II
I
V
er
si
on

 I

20
11

A
ug

us
t

Fig.1 :

The graphic of network

To configure and install Xen we have used yast2

xen command and after that we have setup 2 virtual

machines above each host. The first virtual machine is a

WindowsXp and the second one is Ubuntu 10.10

Desktop. Each virtual machine is configured by it`s own

parameters.

IV.

THE IMPLEMENTATION OF A

SCRIPT

We have evaluated only the tests according to
the

controlled failure. We have evaluated: the CPU

performance in Virtual Machines, the effect of a

controlled failure in the network performance.

Below is
given an algorithm on how Heartbeat works:

1.

Shutdown node 0, this is a controlled failure.

2.

At this moment heartbeat notices all the nodes

around for this situation and presents the virtual

machine that has failed.

3.

In node 0 heartbeat executes/etc/init.d/x0 stop

and/etc/

init.d/x1 stop, so the virtual machines

x0
and x1 will stop.

4.

Heartbeat chooses the host nodes where the

virtual
machine should be migrated.

5.

Let`s say node 1 is setup to support x0 virtual

machine and node 2 to support x1 virtual

machine.

6.

Heartbeat executes this script in node 1:

/etc/init.d/x0 start and this in node 2:

/etc/init.d/x1
start.

Live migration should take in consideration two

factors:

a. Virtual Machines cannot

stop, because if they stop

their services become unavailable. They should live

migrate from one node to another.

b. Heartbeat in all the virtual machines of the failed

nodes executes a script init.d stop and waits to stop
these

machines.

We want to modify the init.d script to give the

possibility of live migration between virtual machines.

This script will return the stop execution code to the

heartbeat while the virtual machines continue the

execution. So heartbeat will suppose that the virtual

machines are stopped, but in reality they work. It will

execute init.d start script and assign the destination

nodes. At this moment starts the live migration of virtual

machines between nodes. At the start moment no virtual

machine is executed so we should take in consideration

the setup of virtual machines. We implement in C++ a

start script by using the follow steps with virtual machine

x0 as an example.

•

X0 is executed on node 1.

•

Send a broadcast messages and migrate x0 to
node2.

•

Start the migration phase.

•

Locate xo to node 2.

This process supports

just a command

“MIGRATE

VIRTUAL

MACHINE”. If we want to use

this
test widely it should be improved in reliability and

time
execution.

V.

EXPERIMENTAL PHASE

CPU performance during the live migration.

The evaluation of network performance during a

physical node failure.

a)

CPU performance by increasing and decreasing

Memory Utilization

For each call of the increase-handler function,
the

memory of Server increases with 10 MB. The IP
address

of x0 is 192.168.1.1 and of x2 is 192.168.1.2. In
x2 is

installed XAMP. From x0 we call 5 times the x2
virtual

machine by using the command

http://192.

168.

1.2/increase_mem

of benchmark Httperf

so the memory
used by x2 will increase up to 50 MB. As

a sample we
are using a script in C which multiplies 2

square

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines

© 2011 Global Journals Inc. (US)

17

matrices with dimensions 5. So this benchmark should
manage the CPU consumption in the Physical host
during the dynamic utilization of memory. In the same
way if we call http://192.168.1.2/decreas_mem , the
virtual memory in x2 would decrease with 10 MB per
time. We evaluate Response time by MemAccess
Benchmark. We have presented all the results in table 1:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
II
I
V
er
si
on

 I

20

11
A
ug

us
t

First we will evaluate the CPU performance.
Thus we should test the CPU activities by increasing
and decreasing the utilization of the memory in virtual
machines. We are using two nodes. At the first one is
located x0 vm which is the client computer with Ubuntu
10.10 desktop installed on it and in host 2 is located the
x2 server computer with WinXP. In this computer we
have installed XAMP 1.7 version. In apache 2.2.16 into
the Web-server machine we have included
memory_balloon.c module. This module will serve as a
tool to increase and decrease the memory utilization of
the virtual machines. Previously we are located at /etc/
apache2/apache.conf , then we have to install a tool:
tool-sin apxs2 and compile it by command apxs2-c-I-a
memory_balloon.c. We can configure test file in /etc/
apache2/httpd.conf as multithreading process.

Table 1:

Communication between 2 virtual machines in

Different

hosts

From table 1 we take Response time and CPU

consuming when memory in apache web server
increases

from 10 MB to 50 MB. It seems that CPU
consuming is

fixed to 44 % and response time grows
slightly in a linear

way. If we repeat again the
experiments with physical

nodes in network we will get
other results, presented in

table 2.

Table 2 :

Communication between 2 physical hosts

If we compare table 1 and table 2 we can
observe

that the response time in the second case is
slightly

smaller because the hypervisor introduces an
additive

time. This additive time corresponds to the CPU

consuming. In table 2 CPU consuming is just 41%
(41%<44 %). because of the absence of hypervisor.

b)

Evaluation of the network performance during a

failure

The main aim of Xen during live migration of

virtual machine from one node

to another one is to

minimize the interrupted services.

Referred to the above
algorithm, initially the virtual

machine is available in the
source node, but it can

decrease the network
performance because it utilizes

some bandwidth. Then,
the virtual machine crosses over

the network, so it is not
available. Finally the virtual

machine is executed in
destination node. To test the

network performance we
are referred to figure 1. Initially

we will test the response
time before, during and after the

migration from node 1
to node 2. So from the shared

storage computer we will
send the ICMP packets towards

virtual machines by
using the command: ping –c 3000 –I

0.01 x0.

In 30 seconds we will transmit 3000 ICMP
packets. After

this command, we will evaluate the round
trip time from

the virtual machine to the shared storage
machine and

vice versa. During 30 seconds of
experiment we want to

simulate the controlled failure of
x0 virtual machine.

This failure will give the possibility of

migration from

node1 to node2. The failure will be
accomplished after

the execution of a script in
/etc/init.d/heartbeat stop. So

we will evaluate the
network response time during the

migration as shown in
table 3. All the results are

evaluated by some network
tools but most significantly

by Net-Flow and PacketTrap
tool.

Table 3 :

The affect of a controlled failure in the round
trip time,

when we have modified the script.

Table 4 :

The affect of a controlled failure in the round
trip time,

before modifying the script.

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines

© 2011 Global Journals Inc. (US)

18

Memory Utilization in
Appache DomU2 Response time CPU Consuming

10 MB 0,046 ms 44 %

20 MB

0,050 ms

44 %

30 MB

0,067 ms 44 %

40 MB

0,099 ms 44 %

50 MB

0,141 ms 44 %

Memory Utilization in
Appache DomU2 Response time CPU Consuming

10 MB

20 MB

30 MB

40 MB

50 MB

0,022 ms 41 %

0,036 ms

0,047 ms

0,081 ms
0,110 ms

41 %

41 %

41 %

41 %

0-18 sec: Time before x0
virtual machine failure

 0,25 ms

18-21 sec: During this time
has happened the failure 1 ms

21-30 sec: The failure h
as finished

0,5 ms down to 0,25 ms

0-18 sec: Time before x0
virtual machine failure

18-21 sec: During this time
has happened the failure

21-30 sec: The failure h
as finished

0,25 ms

1,3 ms

0,6 ms down to 0,25 ms

In the above tables we have presented the
effect of live migration into the round trip time of ICMP
packet. In the table 3 the migration process between
sec 18 and 21 has affected in the increase of the
response time to 1 ms. It has happened because of the
controlled failure. The situation is localized in 0,5 ms
after the sec 21. For inertia reasons it takes few time to
stabilize from 0,5ms to 0,25 ms. Moreover if we analyze
tables 4, the round trip time increases to 1,3 ms. The
reason is that the modified script offers a better
performance.

VI. CONCLUSION AND FUTURE WORK

The performance of live migration between
different physical hosts can be improved significantly if
nodes don’t stop their services. It can be accomplished
by including a script on the heartbeat tool. The time
duration of live migration from one physical host to
another one is very important and it should be as small
as possible. If we refer to table 3 and table 4 we
conclude that the inclusion of our script in heartbeat tool
decreases the round trip time when a controlled failure
occurs from 1,3 ms to 1 ms.

The response time presented in table 2 is
slightly smaller than that presented in table 1. As we

Time duration
Round Trip Time for

packet stream

 Time duration
Round Trip Time for

packet stream

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
II
I
V
er
si
on

 I

20
11

A
ug

us
t

mentioned

above the reason is that the inclusion of the
hypervisor

introduces an additive time. This additive
time

corresponds to the CPU consuming. In table 2 CPU

consuming is just

41% (41% < 44 %) because of the

absence of hypervisor that means our script has
improved

the CPU utilization.

In the future we want to
test the performance of CPU

utilization, Memory
Utilization with Pre-copy and Post-

Copy [8] iteration in
the WAN.

REFERENCES

REFERENCES

REFERENCIAS

1.

www.cc.iitd.ernet.in/misc/cloud/hypervisor_performa
nce.pdf

2.

“Diwaker Gupta1, Ludmila Cherkasova2, Rob

Gardner2, and Amin Vahdat University of California,

an Diego, CA 92122, USA Hewlett-Packard

Laboratories” Enforcing Performance Isolation
across Virtual Machines in Xen.

3.

“Brendan Cully, Geoffrey Lefebvre, Dutch Meyer,

Mike Feeley, Norm Hutchinson, and Andrew

Warfield_

Department of Computer Science The

University of British Columbia”, Remus: High

Availability via Asynchronous Virtual Machine

Replication.

4.

“Asim Kadav” Live Migration of Direct-Access

Devices.

5.

“Wenchao Cui, Dianfu Ma, Tianyu Wo, Qin Li

School
of Computer Science and Engineering Beihang

University Beijing 100191, China” Enhancing

Reliability for Virtual Machines via Continual
Migration.

6.

“Nathan Regola” Center for Research Computing
111

ITC Bldg, Univ. of Notre Dame

Notre Dame, IN
46556 Jean-Christophe Ducom Center

for Research
Computing 124 ITC Bldg, Univ. of Notre

Dame
Notre Dame, IN 46556.

7.

“Wei Huang,

M.Sc (Tech)” High Performance

Network I/O in virtual machines over modern

interconnects “Qiang Li1,2, Qinfen Hao1, Limin
Xiao1,

Zhoujun Li11 School of Computer Science,
Beihang

University, Beijing, 1000832 School of
Mathematics and

Computer Science, Hunan

Normal
University, Changsha,

410081” VM-based
Architecture for Network

Monitoring and Analysis.

8.

Michael R. Hines, Umesh Deshpande, Kartik

Gopalan, “Post-Copy Live Migration of Virtual

Machines”

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines

© 2011 Global Journals Inc. (US)

19

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
II
I
V
er
si
on

 I

20

11
A
ug

us
t

This page is intentionally left blank

The Evaluation of Network Performance and CPU Utilization during Transfer between Virtual Machines

© 2011 Global Journals Inc. (US)

20

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
II
I
V
er
si
on

 I

20
11

A
ug

us
t

	The Evaluation of Network Performance and CPU Utilizationduring Transfer between Virtual Machines
	Authors
	Keywords
	I.INTRODUCTION
	II.RELATED WORKS
	III.SOFTWARE INSTALLED FOR THEEXPERIMENTAL PHASE
	IV.THE IMPLEMENTATION OF ASCRIPT
	V.EXPERIMENTAL PHASE
	a)CPU performance by increasing and decreasingMemory Utilization
	b)Evaluation of the network performance during afailure

	VI. CONCLUSION AND FUTUREWORK
	REFERENCESREFERENCESREFERENCIAS

