Global Journals La Journal KaleidoscopeTM

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

A Novel Real-Time Intelligent Tele Cardiology System Using Wireless Technology to Detect Cardiac Abnormalities

Dr. S.Kohila¹ and K.Gowri²

¹ KSR College of Engineering Tiruchengode Namakkal

Received: 30 May 2011 Accepted: 29 June 2011 Published: 9 July 2011

Abstract

25

26 27

28

29

30

31

32 33

34

35

36

37

38

39

40

This study presents a novel wireless, ambulatory, real-time, and auto alarm intelligent telecardiology system to improve healthcare for cardiovascular disease, which is one of the most prevalent and costly health problems in the world. This system consists of a lightweight 10 and power-saving wireless ECG device equipped with a built-in automatic warning expert 11 system. A temperature sensor is fixed to the user?s body, which senses temperature in the 12 body, and delivers it to the ECG device. This device is connected to a microcontroller and 13 ubiquitous real-time display platform. The acquired ECG signals which are transmitted to the 14 microcontroller is then, processed by the expert system in order to detect the abnormality. An 15 alert signal is sent to the remote database server, which can be accessed by an Internet 16 browser, once an abnormal ECG is detected. The current version of the expert system can 17 identify five types of abnormal cardiac rhythms in real-time, including sinus tachycardia, sinus bradycardia, wide QRS complex, atrial fibrillation (AF), and cardiac asystole, which is very 19 important for both the subjects who are being monitored and the healthcare personnel 20 tracking cardiac-rhythm disorders. The proposed system also activates an emergency medical 21 alarm system when problems occur. We believe that in the future a business-card-like ECG 22 device, accompanied with a Personal Computer, can make universal cardiac protection service 23 possible. 24

Index terms— Atrial fibrillation (AF), ECG, Temperature Sensor, Expert Systems, Personal Computer, Wireless.

1 Introduction a) General Introduction

ardio Vascular disease (CVD) is one of the most prevalent and serious health problems in the world. An Estimated 17.5 million people died from CVD in 2005, representing 30% of all deaths worldwide. Based on current trends, over 20 million people will die from CVD by 2015. In 2000, 56% of CVD deaths occurred before the age of 75. However, CVD is becoming more common in younger people, with most of the people affected now aged between 34 and 65 years [1]. In addition to the fatal cases, at least 20 million people experience nonfatal heart attacks and strokes every year; many requiring continuing costly medical care. Developed countries around the world continue to experience significant problems in providing healthcare services, which are as follows:

1) The increasing proportion of elderly, whose lifestyle changes are increasing the demand for chronic disease Healthcare services; 2) Demand for increased accessibility to hospitals and mobile healthcare services, as well as in-home care [2]; 3) Financial constraints in efficiently improving personalized and quality-oriented healthcare though the current trend of centralizing specialized clinics can certainly reduce clinical costs, decentralized healthcare allow the alternatives of in-hospital and out-hospital care, and even further, home healthcare [3]. Rapid developments in information and communication technologies have made it possible to overcome the

challenges mentioned earlier and to provide a changing society with an improved quality of life and medical services. 43

$\mathbf{2}$ b) Sinus Tachycardia 44

47

53

67

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

91

92

93

Sinus tachycardia (also colloquially known as sinus tach or sinus tachy) is a heart rhythm with elevated rate 45 of impulses originating from the sinoatrial node, defined as a rate greater than 100 beats/min in an average 46 adult. The normal heart rate in the average adult ranges from 60-100 beats/min. Note that the normal heart rate varies with age, with infants having normal heart rate of 110-150 bpm to the elderly, who have slower 48 normals. Tachycardia is often asymptomatic. If the heart rate is too high, cardiac output may fall due to 49 the markedly reduced ventricular C filling time. Rapid rates, though they may be compensating for ischemia 50 elsewhere, increase myocardial oxygen demand and reduce coronary blood flow, thus precipitating an ischemia 51 heart or valvular disease. 52

c) Sinus Bradycardia 3

Sinus bradycardia is a heart rhythm that originates from the sinus node and has a rate of under 60 beats 54 per minute. The decreased heart rate can cause a decreased cardiac output resulting in symptoms such as 55 lightheadedness, dizziness, hypotension, vertigo, and syncope. The slow heart rate may also lead to atrial, 56 junctional, or ventricular ectopic rhythms. Sinus Bradycardia is not necessarily have sinus bradycardia, because 57 58 their trained hearts can pump enough blood in each contraction to allow a low resting heart rate. Sinus 59 Bradycardia can aid in the sport of Free diving, which includes any of various aquatic activities that share 60 the practice of breath-hold underwater diving, Bradycardia aids in this process due to drop in blood rate pulse. These adaptations enable the human body to endure depth and lack of oxygen far beyond what would be possible 61 without the mammalian diving reflex. Sinus bradycardia is a sinus rhythm of less than 60 bpm. It is a common 62 condition found in both healthy individuals and those who are considered well conditioned athletes. Studies have 63 found that 50 -85 percent of conditioned athletes have benign sinus bradycardia, as compared to 23 percent of 64 the general population studied. Trained athletes or young healthy individuals may also have a slow resting heart 65 66

d) Wide QRS Complex 4

A widened QRS (?120 msec) occurs when ventricular activation is abnormally slow, either because the arrhythmia 68 originates outside of the normal conduction system (e.g., ventricular tachycardia), or because of abnormalities 69 within the His-Purkinje system (e.g., supraventricular tachycardia with aberrancy). 70

e) Atrial Fibrillation

Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting nearly 1% of the population. Its prevalence increases with age; although relatively infrequent in those under 40 years old, it occurs in up to 5% of those over 80. Most people with a normal sinus rhythm have a resting heart rate of between 60 and 100 beats per minute. In AF patients, the atria contract rapidly and irregularly at rates between 400 to 800 beat per minute. Fortunately, the atrioventricular node compensates for this activity; only about one or two out of three atrial beats pass to the ventricles [4]. A typical ECG in AF shows a rapid irregular tachycardia in which recognizable P waves are sometimes absent [5]. The ventricular rate in patients with untreated AF is generally 110 to 180 beats per minute. However, slower ventricular rates may occur in elderly patients with untreated AF. Data from the Framingham study demonstrates that chronic heart failure is associated with a 4.5-fold increase in risk of AF in men and a 5.9-fold increase in women. Apart from the epidemiological data, most evidence on the prevalence of AF in heart failure patients stems from analysis of a number of clinical trials conducted within the last 10-15 years on populations with heart failure. AF might have no detectable CVD. Hemodynamic impairment and thromboembolic events related to AF patients included in these trials were selected for different purposes, which are reflected in the varying prevalence of AF. In addition, AF, often associated with structural heart disease, causes significant morbidity, mortality, and healthcare cost in a substantial proportion of patients, thus making it a major global healthcare challenge. In this study, we attempted to develop an intelligent expert system with a built-in abnormal ECG-detection mechanism in the telecardiology healthcare service to facilitate diagnosis and management of patients with AF and other rhythm disorders [6]. Simplicity, reliability, and universality are the main concepts behind this service. Therefore, this study constructs a ubiquitous and intelligent telecardiology healthcare network consisting of a miniature wireless ECG device embedded with an alert expert system for the early detection of cardiac disorders.

f) Cardiac Asystole 6

Asystole is a state of no cardiac electrical activity; hence no contractions of the myocardium and no cardiac 94 output or blood flow. Asystole is one of the conditions required for a medical practitioner to certify death. While 95 the heart is asystolic, there is no blood flow to the brain unless CPR or internal cardiac massage is performed, 96 and even then it is a small amount. After many emergency treatments have been applied but the heart is still 97

unresponsive, it is time to consider pronouncing the patient dead. Even in the rare case that a rhythm reappears, if asystole has persisted for fifteen minutes or more the brain will have been deprived of oxygen long enough to cause brain death.

7 II.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

137

144

8 Overall System

The system proposed in this study uses a Three-lead wireless ECG device, a microcontroller expert system, and a Web-based monitoring platform to meet these objectives. Fig. 1.Shows the flowchart of the proposed system. A small, three-lead ECG device is first set up using electrodes, affixed to areas on the user's body. A temperature sensor is fixed to the users body, which senses temperature in the body and deliver it to the ECG device. This lightweight ECG can be connected to portable devices, such as a notebook or mobile problematic. People who regularly practice sports may Flowchart of proposed system. The System uses a 5 lead ECG acquisition device, the Abnormality detection Algorithm in the device detect the abnormal ECG signal and a Web-based monitoring window allowing access to the data server and plot in real time by using an IE browser. Step?: The Signal are acquired by the ECG Electrodes Step?: The Abnormality in signal is detected and transferred to the hospital intranet, Step?:The information from intranet is moved to the emergency ward database, Step?: The information from the intranet is also moved to the hospital intranet server, Step?: The abnormality information can be accessed by anyone through web service.

Installed on a microcontroller in ECG Device can then initiate data recording and data transmission. Successive data are transmitted to a portable device and processed in a period of 6 s by an expert system. The lead signal, coordinated with the direction of cardiac conduction pathway is extracted for signal analysis. As long as an abnormal ECG signal was detected, the system automatically transmitted data over a Wi-Fi/3G/2G networks to a remote data server. At the same time, the system will send out an alert message to a nursing station in the cardiovascular ward for further examination. If necessary, the emergency ward or other departments can also access this data through an intranet. With the convenience of the worldwide Web protocol, anyone, including physicians, nurses, and family members, can access the data server and monitor real-time ECG plots using a Web browser, such as Internet Explorer (IE). For patients admitted to a cardiovascular ward or intensive care unit (ICU), the proposed cardio-healthcare system provides greater freedom of movement than products currently on the market [7]. Paring lightweight wireless ECG devices with mobile phones offers continuous and reliable patient monitoring. A warning system is also activated when unstable ECGs appear. Whenever the person moves his body temperature rises due the work done, and the degree of increase is based on the amount of work done. Also if a person got any fever his heart beat may increase which may be misrecognized as an abnormal heart condition on an average the heart beat increase for an average of 7-8beats for every single degree increase in temperature. Here in the proposed work the constraint has been considered and the problem has been faced better. In the proposed system Zigbee module is used, which is fully secured and provide full duplex transmission. This will enhances the way of wireless communication used in the system. ZigBee targets the application domain of low power, low duty cycle and low data rate requirement devices.

9 III. Ecg Device With Wireless Unit

The Hardware Circuit Designed Using all the Required parts (5 ECG electrode, Pre Amplifier, Band Pass Filter,
 Amplifier, PIC Microcontroller, ADC, Zigbee

10 a) Analog Unit

The DAQ unit integrates an analog preamplifier, filter, and an AD converter (ADC) into a small (20 × 18 mm²), lightweight, and battery-powered DAQ system. The ECG signal is sampled at 512 Hz with 12-bit resolution, amplified by 100 times, and band pass filtered between 1 to 150 Hz. To reduce the number of wires for high-density recordings, the power, clocks, and measured signals are daisy-chained from one node to another with bit-serial output. Therefore, adjacent nodes (electrodes) are connected together to 1) share the power, reference voltage, and ADC clocks and 2) daisy chain the digital signal outputs.

11 b) Digital Unit

The Digital unit consists of a wireless module and a microcontroller. This unit uses a Zigbee module to send the acquired ECG signals to a Zigbee Enabled PC, serving as a real-time signal processing unit. All modules included The QRS detection in the normal ECG waves is shown in Fig 3 ?? The black curve means the normal ECG signal which contains three waves. The dotted line shows the first deviation of the normal ECG signal. Results show that full squares mark the R wave peaks, full circles mark the Q wave peaks, and full star mark the S wave peak. QRS onset is defined by the vertical line.

V.

12 Block Diagram of ECG Device

one wireless-transmission unit and three DAQs, the theoretical maximum running time is estimated at about 33 h when using an 1100 mA?h Li-ion battery with continuous acquisition and transmission of the physiological signal to the expert system [9].

13 IV. Abnormality Detection Algorithm In System a) QRS Wave Detection Algorithm

The ECG signals are amplified and recorded with a sampling rate of 512 Hz and band pass filtered between 1 and 150 Hz. Artifacts were removed before R peak detection. A 50 Hz notch filter is used to eliminate the power line interference, producing high-frequency, noise-free, and smooth data. Two segments of the baseline signal are extracted to compute mean and standard deviation (SD). Besides, the QRS detector requires the first and second-order derivative of the preprocessed ECG signal. Fig. ??.Represents the QRS Detection of the normal ECG Wave.

The latter gives spikes at the fiducial points. There are also false spikes, but their relative magnitudes are lower than those of the spikes at the fiducial points. Accordingly, the R peak is clipped by higher magnitude negative peaks and high positive peaks in the first derivative plot. The procedure of defining the QRS complex onset is as follows: after 256 ms of flat segment in the ECG, the first sample, where the slope becomes steeper (high positive peaks) than the higher slope threshold, is defined as the QRS onset. The lower slope threshold is used to detect the higher magnitude negative peaks. Both thresholds are updated to search for missing beats.

After identifying the QRS onset, the R peak is labeled by searching for the maximal value of the ECG QRS Detection of the Normal ECG Waves Fig. ??: Fig. ??:

July samples in the 36ms following the QRS onset. When R and backward to identify the two most negative points on the ECG plot and labels them as the Q wave peak and the S wave peak, respectively. Fig. ??. Represent the QRS Peak Detected Wave. The QRS complex duration is set from QRS onset time to 20 ms after the S wave peak [10].

14 b) Abnormal ECG Detection

After defining the QRS complex and the Q, R, and S wave peak, we then sought to detect common and important rhythm disorders, including sinus tachycardia, sinus bradycardia, cardiac systole, AF, and wide QRS complex. Sinus tachycardia is detected by the condition of the heart rate >100 beats per minute.

An asystole indicates the situation of no heart rate. Wide QRS complex occurred as the duration of QRS complex was greater than or equal to 120 ms. C. AF Detection Since an irregular rhythm of the QRS complexes is the major feature of AF, the R-R interval (RRI), defined as the interval of neighboring QRS complexes, is an ideal parameter to identify AF. This study uses two different algorithms for AF detection.

Peak is determined, the QRS detector searches forward Theoretically, Algorithm I is more accurate in detecting an irregular ventricular rhythm, though in detecting frequent pre mature beats during uncommon, it is difficult to differentiate the Atrial Fibrillation from Premature Beats. To overcome this problem, we formulated Algorithm II, which uses a cut-off value of RRIstd>60 ms for AF detection. This condition shows that whenever the standard Deviation of RRI exceeds 60ms the system will produce an alert signal. The cut-off value of 60 ms was based on comparing 50 normal subjects' and 50 patients having cardiac abnormality' Also Algorithm II will produce an accurate detection considering the temperature of the patient Fig. ?? shows statistical results of the differences between normal and AF patients regarding $\hat{1}$?"RRI and RRIstd. Accordingly, the threshold level of $\hat{1}$?"RRI and RRIstd were given as 150 and 60 ms, respectively.

15 Results And Discussions

In order to analyze the performance of the abnormality detection algorithm, the device is fixed to 10 patients who underwent treatment at General Hospital.

Analysis and Performance Calculation was performed according to the recommendations of the American National Standard for ambulatory ECG analyzers (ANSI/AAMI EC38-1994) [11]. A true positive (TP) shows that the algorithm successfully detected abnormality for abnormal subject during every 6 s of computation. On the other hand, a false negative (FN) shows a failed detection of abnormality for an abnormal patient. Finally, false positive (FP) represents a false detection of abnormality, whereas true negative (TN) means normal subjects have no abnormality detection. Accuracy, sensitivity and positive predictive values were used for further analysis. The recorded data were shown in Tables I and II for normal and abnormal patients under testing for different algorithms. Fig. 5 shows the analysis of average performance between two algorithms.

The subjects tested for abnormalities were of age group greater than 50. Table I shows the abnormality detection in subjects using Algorithm I. Totally 10 subjects were tested and each were tested 20 times, hence there will be totally 200 tests undergone. Each test was recorded for duration of 6 sec. Hence the total duration for each subject will be 2 min. Similarly, Table II shows the abnormality detection in subjects using Algorithm

II and Fig. 5.Represents the analysis of performance between two algorithms. Step 2: Calculation of RRI (the 208 duration of adjoinedRpeaks). 209

Step 3: Calculation of the variation of consecutive RRI (Î?"RRI). 210

Step4: Activation of the alarm system when ??"RRI>150 ms occurs twice within each 6 s of computation.

2) Algorithm II for Abnormal ECG Detection 16

Step 1: Detection of R waves and marking of R peaks. 213

Step2: Calculation of RRI (the duration of adjoined R peaks).

Step Counting the number of peaks to calculate the number of beats in each 6s. 215

Step4: Check whether temperature ranges between 33-37 0 C continues the process, else goto??tep 8 Step5 216 Calculation of the variation of consecutive RRI (Î?"RRI).

Step6: Calculation of the SD of RRI (RRIstd) in each 6-s recording.

Step7: Activation of the alarm system when ?"RRI>150 ms occurs twice and RRIstd > 60 ms within 6 s of

Measuring the heartbeat, up to 180bpm is considerable during very high fever. This algorithm shows 100% for normal subjects and with little difference in case of abnormal subjects. While considering Algorithm I the average accuracy was 93.5%, its sensitivity performance is 95.9%, and the positive predictive value is 97.4%. The same 10 patients were also tested using Algorithm II, in which abnormality is detected only when three conditions were met. i.e., (i) Î?"RRI>150 ms occurs twice (ii) RRIstd > 60 ms within 6 s of computation and (iii) Body temperature <= 104F, No, of Beats > 150 bpm. The average accuracy, sensitivity, and positive predictive performance were 96%, 97.5%, and 98.5% respectively. Comparing the performance of both Algorithms I and II, the performance in Algorithm II was much better. These results showed that combining the three conditions as the detection criteria in Algorithm II, will improve the abnormality detection performance, especially in terms of accuracy and sensitivity performance. Among a total of 10 patients, Algorithm II displays the stable and high impact results across subjects. The results suggest that our system can provide a reliable abnormality detection function in telecardiology healthcare services.

VI.**17**

211

212

214

217

218

219 220

221

222

223

224

225

226

227

228

229

230

231

232

235

236

237

238

239

240

241 242

246

247

248

249

250

251 252

253

254

255

256 257

258

259

260

Conclusion 18 234

AF, the most common sustained cardiac arrhythmia, causes significant mortality and morbidity, and remains a major healthcare challenge [11]. Early detection is very important for providing appropriate therapeutic interventions and managing disease related complications, such as congestive heart failure and stroke. This study demonstrates that the proposed intelligent telecardiology system is capable of accurately detecting AF episodes and instantaneously alerting both the user and the healthcare personnel, facilitating early medical intervention. Furthermore, this intelligent telecardiology system is superior to conventional healthcare devices because it integrates all the key elements in one system. The following list describes the most important features of the proposed system 1) Wireless: Communications between devices are all wireless (Zigbee), reducing wire stock usage and allowing convenient operation. lightweight, can easily be applied to the body, and can operate for a considerable length of time. The system can be run anywhere with a notebook or mobile phone, eliminating the problems of limited power or restricted areas.

3) Real time: ECG signals can be transmitted to nearby mobile devices instantly and there is only a few seconds lag when the signals are transmitted to a remote database server, depending on network capacity. -alarm : The built-in expert system automatically detects abnormal ECG signals and alerts both the user and healthcare personnel using a Internet, or by sending a message to a remote database server installed in the hospital computer system and the emergency service system.

This novel system cannot only be used for inpatients and outpatients, but also provides a longlasting health monitor to normal people. Patients wearing the lightweight three-limb lead wireless ECG device can hardly feel its presence, but still enjoy a sense of protection.

However, there are several limitations for the expert system. First, Abnormality detection is based on the RRI variation, when the user has frequent atrial or ventricular premature beats, which can be misdiagnosed as AF. Second, in patients with Cardiac Abnormality and markedly impaired AV nodal conduction, RRI variations may become too small for the system to diagnose Abnormality accurately. Lastly, there is still considerable motion noise during the recording, which might impair diagnostic accuracy. In conclusion, this novel intelligent telecardiology system is capable of early Abnormality detection, and represents a successful first step toward improving efficiency and quality of care in CVD. Further researches aimed at improving both hardware and

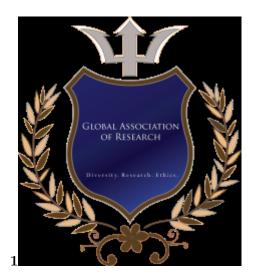


Figure 1: Fig. 1:

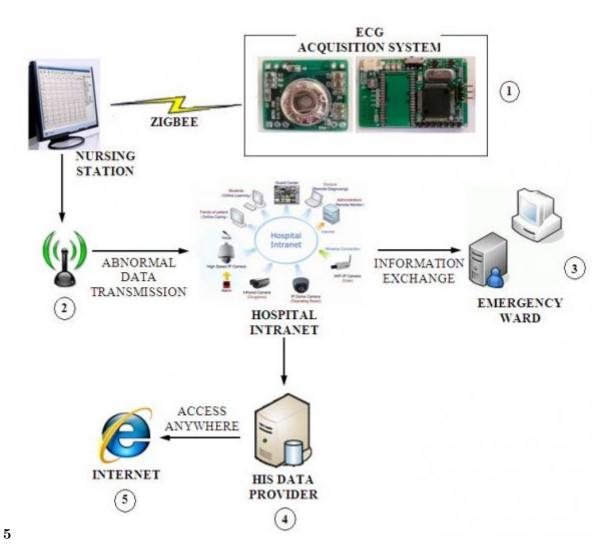


Figure 2: Fig 5:

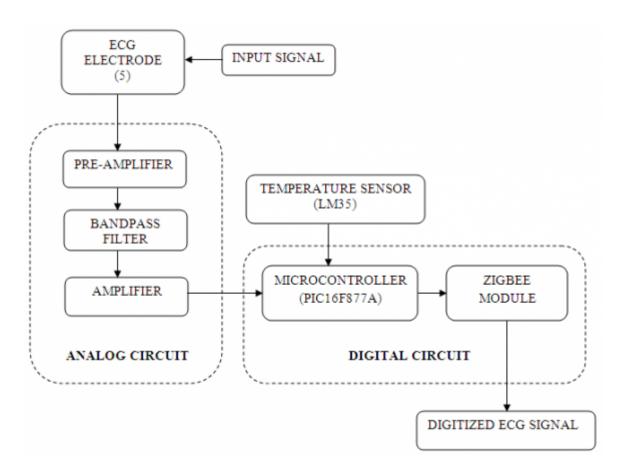


Figure 3:

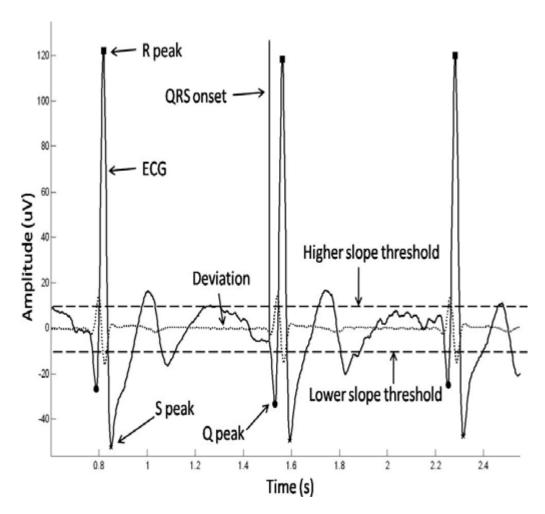


Figure 4:

Ι

1) Algorithm I for Abnormal ECG Detection:

Step1: Detection of R waves and marking of R peaks.

Subject/Condition (N=10)

Abnormal patients Normal patients Total no. of tests

ALGORITHM	l-
T	

Positive NegativeTotal
Test Test
187 8 195
5 0 5
200

Figure 5: Table I :

software designs are necessary to enhance the efficiency and accuracy in future models of this system. 5 261 262

 $^{^{1}}$ © 2011 Global Journals Inc. (US)

 ²Global Journal of Computer Science and TechnologyVolume XI Issue XII Version I July
 ³) Ambulatory: The miniature ECG device is very July
 ⁴© 2011 Global Journals Inc. (US)

⁵This page is intentionally left blankJuly

263 .1 Acknowledgement

- The Authors would like to thank The Principal and Head of the Department of KSR College of Engineering for their constant support; also they thank Dr.T.Gayathri M.B.B.S, General Hospital, Chennai for her great help in providing clinical guidance.
- 267 [Amer. Med. Assoc] , Amer. Med. Assoc 241 (19) p. .
- [Worldhealthorganization ()], Geneva Worldhealthorganization . //www.who.int/whr/2008/whr08_en. pdf 2008.
- [Amer ()] 'ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation'. Amer . Cardiol.J. 2006. 48 p. .
- ²⁷² [Waktare ()] 'Atrial fibrillation'. J E Waktare . Circulation 2002. 106 p. .
- 273 [Available] http://www.cbc.ca/healthcare/final_report.pdf Available,
- [Romanow (2002)] Building on values: The future of healthcare in Canada-Final report'. Commission of the Future of Health Care, R J Romanow . 2002. Nov. Ottawa, Canada.
- ²⁷⁶ [Kannel and Mcgee ()] Diabetes and cardiovascular disease. The Framingham study, W Kannel , D Mcgee . 1979.
- [Vanagas et al. ()] 'Factors affecting relevance of tele-ECG systems application to high risk for future ischemic heart disease events patients group'. G Vanagas, R Zaliunas, R Benetis, Slapikas. *Telemed. J. e-Health* 2008. 14 (4) p. .
- [Koch.S ()] 'Home telehealth-Current state and future trends'. Int. J. Med. Inf Koch.S (ed.) 2006. 75 p. .
- 281 [Hurst] Naming of the waves in the ECG, with a brief account of their Genesis, Hurst .
- [Pang et al. (2004)] 'Real time ischemia detection in the smart home care system'. L Pang , I Techoudovski , M Braecklein , Kellermann K Egorouchkina , Bolz . *Proc. 27th Annu. Conf*, (27th Annu. ConfShanghai, China) 2005. Sep. 1-4. p. .
- 285 [References Références Referencias ()] References Références Referencias, 2011.
- [Likas and Stroumbis ()] 'Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECG'. C , Fotiadis D A Likas , . C Stroumbis , MichalisL . ANSI/AAMI EC38-1994. J. Electrocardiol 1994. 1998. 2002. 35 (1) p. . American National Standard for Ambulatory Electrocardiographs (Circulation)
- ²⁹⁰ [Lin et al. ()] 'Wearable and wireless brain computer interface and its applications'. . C T Lin , . L W Ko ,

 ChangC J , WangY T , ChungC H , . J R Duann , JungT , Chiouj . presented at the 13th Int. Conf. Human

 Computer Interface, (San Diego, CA) 2009.
- [World Health Organization ()] World Health Organization, 2008. (The World Health Report)