Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

1 2	Reengineering of Module for Public Sector & Complexity Measurement
3	Dr. Anil Kumar ¹ and Dr. Anil Kumar ²
4	1 Vaish College of Engineering, Rohtak, Haryana, India
5	Received: 14 July 2011 Accepted: 10 August 2011 Published: 20 August 2011

7 Abstract

- 8 This paper is based on reengineering of module for public sector, it deals with the
- ⁹ measurement of complexity as well as effort measurement of module during Reengineering of
- ¹⁰ module at design time. This methodology reduces more than 75
- 11

6

12 Index terms— S Conventional Methodology [8], Structural Methodology [8], Excel Template [9].

13 1 INTRODUCTION

oday public sector is an integral part of Govt. and performance of it, has considerable scope for improvement. 14 However, these sector such as govt. hospital, depends on information system, which have been engineered in 15 earlier days, such legacy system using procedural methodology, db handling, GUI etc. As services grow in size or 16 the requirement of public increases continuously, due to this there is accelerating need software maintenance. It 17 has been observed that, the cost of the maintenance is much higher than the cost of reengineering of the software. 18 And also continue maintenance of such system become tedious and cost approach and occurrence of software 19 20 failure is more due to poor documentation, poorly structured & transparency, and also changes technology infra 21 structured in hardware and software, complexity of module increases continuously, and finally logic code written is outdated hardware and software. Therefore, maintenance is not a good choice. Reengineering, is much better 22 than maintenance. It is an approach to solve problem of legacy system. Its aim is the qualitative improvement 23 of existing software and the extension of its life expectancy. It consists of examination (reverse engineering) and 24 alteration (forward engineering) of legacy system. 25

²⁶ **2 II.**

27 **3 PURPOSED WORK**

The purposed methodology, used to reengineering of module of public sector i.e. more suitable, for available 28 tools and techniques. It will create significant improvement to measure the complexity and Author : Professor, 29 Department of Computer Science & Application Kurukshetra University, Kurukshetra, India. E-mail: 30 31 Anilbest2005@gmail.com Author : Asst. Professor, Computer Science & Engg. Vaish College of Engineering, 32 Rohtak, India. E-mail: Bestanil2005@rediffmail.com effort of module individually by using Excel Template [9]. 33 The Excel Template that is used to measure complexity of each and every modules of hospital are Modified 34 Method Hiding Factor It also specifies causes of errors and the use of the safety design concepts, to prevent minimize errors by detecting them, before undesirable effect takes place. The excel template provides facility to 35 reengineering the modules in such a way that help enables the doctors to better serve their patients, Reducing the 36 time spent by staff filling out forms, Control over the costs incurred by diagnosis -related groups, Increased nursing 37 productivity, Faster and informed decision-making by doctors, Improve decision support for the management, 38 Cost-effective patient transactions. 39

40 **4 III.**

41 5 PROBLEM DESCRIPTION

42 HMS is powerful, flexible, easy to use and has designed & developed to deliver real conceivable benefits to 43 hospitals and clinics. It is designed for multi specialty hospitals, to cover a wide range of hospital administration

44 and management processes.

Hospital Management System is a product of our deep experience in delivering successful solutions to various customers in the healthcare space and our expertise in developing unique Intellectual Property in the form of products and re-usable components for the Healthcare Industry. Conventional methodology, based on SDLC, there is no way to measurement of complexity and effort of module during reengineering of module as well as

49 this methodology not support reusability and also productivity of module not very much effective.

50 Structured Methodology is slightly improvement of conventional methodology. If we reengineering the module 51 by using this methodology, it help to measure control but not support reusability, but help in productivity and

quality of analysis and design. It will provide more effective analysis & more stable or maintainable design. However, both these methodology not support today's available tool and techniques.

54 6 IV.

55 7 RESULTS AND DISCUSSION

There are twelve excel template that are used to determine complexity of module that are more efficient as compared to other methodologies. Six excel template [9] such as M-MHF, M-AHF, M-MIF, M-AIF, M-PF & M-CF are used to determine complexity of each and every module of the system, as well as it also provides facilities to hide information, to increase reusability & productivity of modules, measure the degree of method overriding in class inheritance and also measure degree of coupling among different types of modules.

 $_{61}$ \qquad Other six excel template [9] , such as M-WMC, M-DIT, M-NOC, M-CBO, M-RFC & M-LCOM, are used

 $_{62}$ to determine effort i.e. required to reengineering of the module during Post Martem Methodology ??1 2,3].

⁶³ The purposed methodology also, allows the developer to communicate using well-known, well understood names

⁶⁴ for the software interactions. Common design pattern can improved over time, making them more robust than⁶⁵ ad-hoc (in-formal or unplanned) design.

66 V.

67 8 CONCLUSION

68 Overall objective of this paper, is that modules are design in such a way that if any time any where any module

⁶⁹ need for reengineering in future, it is easily takes place. As well as it provides facilities to determine complexity

⁷⁰ [3,4] and effort from that module, where reengineering happens. It does not need to determine complexity of ⁷¹ entire modules again and again. And it will focus on optimization and increase productivity [7], reusability [7],

flexibility [7], understandability and also support reliability of modules [10].

Figure 1:

72

 $^{^1 \}odot$ 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue XVI Version I 26

 $^{^{2}}$ © 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue XVI Version I 28 2011 September This page is intentionally left blank

2011

Figure 2: T © 2011

Figure 3: Fig. 1 :

Figure 4: Fig. 2:

1

nplate'	
Post Martem	Conventional
Activity Methodology	methodology
36.5141	60
70.47	85
46.806	78
52.9121	75
51.8	77
Doctor	
Examina 330 h916	56
36.914	62
20.4	56
61.2712	80
33.4272	75
33.4272	75
	$\begin{array}{c} {\rm Post\ Martem} \\ {\rm Activity\ Methodology} \\ 36.5141 \\ 70.47 \\ 46.806 \\ 52.9121 \\ 51.8 \\ {\rm Doctor} \\ {\rm Examina 301916} \\ 36.914 \\ 20.4 \\ 61.2712 \\ 33.4272 \\ 33.4272 \\ 33.4272 \\ \end{array}$

Figure 5: Table 1 :

$\mathbf{2}$

Reengineering	of Module for Public Sector & Con	nplexity Measure	ement				
Sr No	Activity	M-WMC	C M-DIT N	I-NO	СМ-0	CB0 N	M-RFC M-LCO
1	HMS Staff	3	4	3	2	2	3
2	Emergency	3	9	3	1	2	4
3	Enquiry	3	3	4	2	2	4
4	OPD	2	20	4	2	2	4
5	Managing Unit	5	20	9	4	4	5
6	Doctor Exam	2	8	3	1	2	4
7	Nurse Detail	2	9	3	1	2	4
8	P Patient Status	3	4	5	2	2	2
9	Pharmacy/Drug	4	14	7	3	2	4
10	Laundry	1	2	1	1	2	2
11	Kitchen	1	2	1	1	2	2

Figure 6: Table 2 :

4

- [Kinny et al. ()] 'A methodology and modeling technique for systems of BDI agents'. D; Kinny , M Georgeff , A
 Rao . LNAI 1996. Springer Verlag. 1038.
- [Wastell et al. ()] 'A methodology for business redesign: experience and issues'. G W Wastell , P White , P
 Kawalek . Journal of Strategic Information Systems 1994. 3 (1) p. .
- [William et al. (1990)] 'An Empirical Study of Representation Methods for Reusable Software Components'. B
 William , Thomas P Frakes , Pole . *IEEE Transactions on Software Engineering* August 1990. 20 (8) p. .
- [Kettinger et al. ()] 'Business process change: a study of methodologies, techniques, and tools'. W J Kettinger ,
 J T C Teng , S Guha . *MISQ Quarterly March*, 1997. p. .
- 81 [Muthu et al. ()] 'Business process reengineering: a consolidated methodology'. S Muthu , L Whitman , H
- S Cheraghi . Proceedings of the 4th Annual International Conference on Industrial Engineering Theory,
- Applications and Practice, (the 4th Annual International Conference on Industrial Engineering Theory,
 Applications and Practice) 1999.
- [Briand et al. (1993)] 'Developing interpretable models with optimized set reduction for identifying high-risk
 software components'. Lionel C Briand , Victor R Basili , Christopher J Hetmanski . *IEEE Transactions on* Software Engineering November 1993. 19 (11) p. .
- [Weyuker ()] 'Evaluating Software Complexity Measures'. Elaine J Weyuker . IEEE Transactions on Software
 Engineering 1988. 14 (9) p. .
- 90 [IEEE Standard for a Software Quality Metrics Methodology ()] IEEE Standard for a Software Quality Metrics
 91 Methodology, 1998. p. . Software Engineering Standards Committee of the IEEE Computer Society
- ⁹² [Chen et al. (1990)] 'The C Information Abstraction System'. Yin-Farn Chen , Michael Y Nishimoto , C V
 ⁹³ Ramamoorthy . *IEEE Transactions on Software Engineering* March 1990. 16 (3) p. .
- [Tenner and Detoro ()] The process redesign-the implementation guide for managers, A R Tenner , I J Detoro .
 1992. New Jersey: Prentice Hall.