
© 2011I . Prof. S.China Venkateswarlu, Prof. M.Arya Bhanu, Prof.Yudhaveer Katta, V.Badari. This is a research/review paper,
distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium,
provided the original work is properly cited.

Implementation of K-Means Clustering Algorithm Using Java

By Prof. S.China Venkateswarlu, Prof. M.Arya Bhanu, Prof.Yudhaveer Katta,
V.Badari

 Department of CSE ,JNTUH,HITS COE-HYDERABAD

Abstract - Emergence of modern techniques for scientific data collection has resulted in large
scale accumulation of data pertaining to diverse fields. Conventional database querying methods
are inadequate to extract useful information from huge data analysis. Cluster analysis is one of
the major data analysis methods and k-means clustering algorithm Emergence of modern
techniques for scientific data collection has resulted in large scale accumulation of data per-
tainting diverse felids. Conventional Data base methods are inadequate to extract useful
information from huge data banks. Cluster analysis is one of the major data analysis methods
and the k-means clustering algorithm is widely used for many practical applications. But the
original k-means algorithm is computationally expensive and the quality of the resulting clusters
heavily depends on the selection of initial cancroids. Several methods have been proposed in the
literature for improving the performance of the k-means clustering algorithm. The k-means
algorithm is computationally expensive and requires time proportional to the product of the
number of data items, number of clusters and the number of iterations.This papert proposes a
method for making the algorithm more effective and efficient.

Keywords : About four key words or phrases in alphabetical order, separated by commas.

Implementation of K-Means Clustering Algorithm Using Java
Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology
Volume 11 Issue 17 Version 1.0 October 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

GJCST-C Classification : I.5.3

Implementation of K-Means Clustering
Algorithm Using Java

Prof. S.China Venkateswarluα, Prof. M.Arya BhanuΩ, Prof.Yudhaveer Kattaβ, V.Badari ψ

Abstract - Emergence of modern techniques for scientific data
collection has resulted in large scale accumulation of data
pertaining to diverse fields. Conventional database querying
methods are inadequate to extract useful information from
huge data analysis. Cluster analysis is one of the major data
analysis methods and k-means clustering algorithm
Emergence of modern techniques for scientific data collection
has resulted in large scale accumulation of data per- tainting
diverse felids. Conventional Data base methods are
inadequate to extract useful information from huge data
banks. Cluster analysis is one of the major data analysis
methods and the k-means clustering algorithm is widely used
for many practical applications. But the original k-means
algorithm is computationally expensive and the quality of the
resulting clusters heavily depends on the selection of initial
cancroids. Several methods have been proposed in the
literature for improving the performance of the k-means
clustering algorithm. The k-means algorithm is computationally
expensive and requires time proportional to the product of the
number of data items, number of clusters and the number of
iterations.This papert proposes a method for making the
algorithm more effective and efficient.

 About four key words or phrases in
alphabetical order, separated by commas.

I. INTRODUCTION

a) Module design and organization

i. Fixed Transmission
n this module the fixed transmission is computed by
retrieving each link which is limited to maximum signal
ratio. Then the fixed routes are computed which give

the maximum transmitted power per node and is limited
to hardware constraint. Then the distance between the
nodes is compute to calculate the end-to-end reliability.
The end-to end reliability is a decreasing function, which
can be treated as the cost metric for route selection.

ii. End to End Reliability
This module focuses on the problem of

optimizing transmission power levels and route selection
on an end-to end basis. This module minimizes the end-
to end power for a fixed route. The end-to-end route
reliability under the optimal power allocation scheme is

represented as any fixed route, different power
allocation schemes result in different

end-to-end
reliability and power consumption. The next step is to
retrieve the total bandwidth then the distance between
nodes are minimized and reliability routes are
computed.

iii.

Outage Diversity

In the module the case of a point-to-point link, is
considered and the trade-off between route outage and
consumed power in a network setting. This type of
analysis gives insight to how fast the end-to-end outage
decreases as more power is spent on the transmission.
First, we look at the case that the maximum transmitted
power at each link is fixed. It is observed that the route
selection does not have any effect on the form of this
tradeoff. By selecting the optimal route, we minimized
the end to end outage probability by minimizing.

This shows that as long as

we limit our
approach to a single transmitter and a single receiver
per link, even under optimal power allocation and route
selection, the trade-off maintains the same form as in
the single link case. Phase 1 of the heuristic algorithm
requires a time complexity of O(nkp) for finding the initial
centroids, as the maximum time required here is for
computing the distances between each data point and
all other data-points in the set D. In the original k-means
algorithm, before the algorithm converges, the centroids
are calculated many times and the data points are
assigned to their nearest centroids. Since complete
redistribution of the data points takes place according to
the new centroids, this takes O(nkl), where n is the
number of data-points, k is the number of clusters and l
is the number of iterations. To obtain the initial clusters,
algorithm 4 requires O(nk). Here, some data points
remain in its cluster while the others move to other
clusters depending on their relative distance from the
new centroid and the old centroid. This requires O(1) if a
data-point stays in its cluster, and O(k) otherwise. As the
algorithm converges, the number of data points moving
away from their cluster decreases with each iteration.
Assuming that half the data points move from their
clusters, this requires O(nk/2). Hence the total cost of
this phase2 of the heuristic algorithm is O(nk), not
O(nkl). Thus the overall time complexity of the heuristic
algorithm becomes O(nkp).

In an Enhanced k-means approach[4] we are

I

© 2011 Global Journals Inc. (US)

Keywords :

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

63

20
11

O
ct
ob

er

Author α : Professor & HOD in Department of CSE ,JNTUH,HITS
COE-HYDERABAD , 08CS5028 : +91 9030076793;
E-mail : cvenkateswarlus@gmail.com
Author Ω : Professor & HOD in Department of IT, VJIT,
Author β : Prof. Yudhaveer Katta, working as a Professor & HOD in
Department of IT, VJIT,
Author ψ : Assistant Professor in Dept. of CSE-HITS. not calculating the distance of elements from each

some of the data points may become more closer to a
different cluster and such points are redistributed
accordingly. The entire process is repeated until no
more data points cross cluster boundaries. The
enhancedmethod is described as Algorithm 4. This
method involves keeping track of the distance between
each data point and the centroid of its nearest cluster.
During the subsequent iteration,

instead of computing
the distance of the data point from all cluster centroids,
its distance from the previous nearest cluster alone is
determined. If that distance is less than or equal to the
previous nearest distance, the data point.

b)

Algorithm: finding the initial centroids

i.

Finding Intial Centroids

Input:

D={d1,d2,…..dn} // set of n data items

K // number of desired cluster Output: A set of k initial
centroids.

Steps:

1.Set m=1:

2. Compute the distance between each data point and
all other data-points in the set D:

3. Find the closest pair of data points from the set D and
form a data-point set Am(1<= m<= k) which contains
these two data-points,. Delete these two data points
from the set D;

4. Find the data point in D that is closest to the data
point set Am. Add it

to Am and delete it from D:

5. Repeat step 4 until the number of data points in Am
reaches 0.75* (n/k);

6. If m< k,

then m=m+1, find another pair of data
points from D between which the distance is the
shortest, from another data –point set Am and delete
them from D, Go to step 4:

7. For each data-

point set Am (1<=m<=k) find the
arithmetic mean of the vectors of data points in Am,
these means will be the initial centroids.

Algorithm 3 describes the method for finding
initial centroids of the clusters [12]. Initially, compute the
distances between each data point and all other data
points in the set of data points. Then find out the closest
pair of data points and form a set A1 consisting of these
two data points, and delete them from the data point set
D. Then determine the data point which is closest to the
set A1, add it to A1 and delete it from D. Repeat this
procedure until the number of elements in the set A1
reaches

a threshold. At that point go back to the second

step and form another data-point set A2. Repeat this till
’k’ such sets of data points are obtained. Finally the
initial centroids are obtained by averaging all the vectors

in each data-point set. The Euclidean distance is
used for determining the closeness of each

data point

to the cluster centroids. In the first

phase, the initial
centroids are determined

systematically so as to

produce clusters with better accuracy [12]. The second
phase makes use of a variant of the

clustering method

discussed in [4]. It starts by forming the initial clusters
based on the relative distance of each data-point
from the initial centroids. These clusters are

subsequently fine-tuned by using a heuristic approach,
thereby improving the efficiency. The two phases of the
enhanced method are described below

as Algorithm 3

and Algorithm 4.

The first step in Phase 2 is to determine the
distance between each data-point and the initial
centroids of all the clusters. The data-points are then
assigned to the clusters

having the closest centroids.

This results in an initial grouping of the data-points. For
each data-point, the

cluster to which it is assigned

(ClusterId) and its distance from the centroid of the
nearest cluster (Nearest_Dist) are noted. Inclusion
of data-points in various clusters may lead to a change
in the values of the cluster centroids. For each cluster,
the centroids are recalculated by taking the mean of
the values of its data-points. Up to this step, the
procedure is almost similar to the original k-means
algorithm except that the initial centroids are
computed systematically The next stage is an iterative
process which makes use of a heuristic method to
improve the efficiency. During the

iteration, the data-

points may get redistributed

to different clusters. The

method involves keeping track of the distance between
each data-point and the centroid of its presentnearest

cluster. At the beginning of the iteration, the distance of
each data-point from the new centroid of its present

nearest cluster is determined. If this distance is less than
or equal to the previous nearest distance, that is an
indication that

the data point stays in that cluster itself

and there is no need to compute its distance from
other centroids. This results in the saving of time
required to compute the distances to k-1 cluster
centroids. On the other hand, if the new centroid of the
present nearest cluster is more distant from the data-
point than its previous centroid, there is a chance for the
data-point getting included in another nearer cluster. In
that case, it is required to determine the distance of the
data-point from all the cluster centroids. Identify the new
nearest cluster and record the new value of the nearest
distance. The loop is repeated until no more data-points
cross cluster boundaries, which indicates the
convergence criterion. The heuristic

method described

above results in significant reduction in the number of
computations and thus improves the efficiency.

c)

Algorithm: assigning data-points to clusters [1]

Assininig DataPoints to Centroids

Input:

© 2011 Global Journals Inc. (US)

manner.Once the initial centroids are thus determined,
the distance between each data point and centroids of
all the clusters are determined and the data points are
included in the nearest cluster. Cluster means are then
recalculated to find the new centroids. As a result of this,

centroid. The algorithm proceeds in the following

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

64

20
11

O
ct
ob

er
Implementation of K-Means Clustering Algorithm Using Java

c1,c2,….ck} // set of k centroids

Steps:

1.

Compute the distance of each data point di
(1<=i<=) to all the centroids cf (1<=j<=k) as
d(di, cj);

2.

For each data-point di, find the closest centroid
cf and assign di to cluster j.

3.

Set CllusterId[i]=j; // j: Id of the closest
cluster

4.

Set Nearest _ Dist[i] = d(di, cj) ;

5.

For each cluster j (1<= j<= k) troids:

6.

Repeat

7.

For each data-point di.

8.

Compute its distance is less than or equal to
the present nearest cluster:

9.

If this distance is < or = to the present nearest
distance , the data-

point satays in the cluster:

 Else

10.

For every centroid cj (1 <=j<= k) Compute the
distance d(di, cj); Endfor;

11.

Asign the data-point di to the cluster with the
nearest centroid cj

12.

Set Cluster ID[i];

13.

Set Nearest_Dist[i] = d(di, cf) ;

14.

Endfor;

15.

For each cluster j (1<= j<=), recalculate the
centroids:

16.

Until the convergence criterin is met.

Phase 1 of 2 the enhanced algorithm requires a
time com-

plexity of O

(n) for finding the initial centroids,

as the max-imum time required here is for computing
the distances be-

tween each data point and all other

data-points in the set D. Inthe original k-means
algorithm, before the algorithm converges the
centroids are calculated many times and thedata points
are assigned to their nearest centroids. Since complete
redistribution of the data points takes place

ac-cording

to the new centroids, this takes O

(nkl), where n is the

number of data-points, k is the number of clusters and
l is the number of iterations. To obtain the initial clusters,

Algorithm4 requires O(nk). Here, some data points
remain in its cluster while the others move to other
clusters depending on theirrelative distance from the
new centroid and the old centroid. This requires O(1) if a
data-point stays

in its cluster, and O(k)

otherwise. As the

algorithm converges, the number of data points moving
away from their cluster decreases with eachiteration.
Assuming that half the data points move from their
clusters, this requires O

(nk/2). Hence the total cost of

thisphase of the algorithm is O(nk), not O(nkl). Thus the
overall time complex2ity of the enhanced algorithm
(Algorithm 2) becomes O (n), since k is much less than
n.

II. CONCLUSION

In this section we have shown how testing is
performed and different test cases are designed to test
the system for its performance as well as debugging
process. The validation of the test cases is also shown.
The k-means algorithm is widely used for clustering
large sets of data. But the standard algorithm do not
always guarantee good results as the accuracy of the
final clusters depend on the selection of initial
centroids. Moreover, the computational complexity of
the standard algorithm is objectionably high owing to
the need to reassign the data points a number of times,
during every iteration of the loop. This Project presents
an enhanced k-means algorithm which combines a
systematic method for finding initial centroids and
efficient way for assigning data points to clusters.

III. IMPLEMENTATION AND RESULTS

a) Introduction
In the module the case of a point-to-point link, is

considered and the trade-off between route outage and
consumed power in a network setting. This type of
analysis gives insight to how fast the end-to-end outage
decreases as more power is spent on the transmission.
First, we look at the case that the maximum transmitted
power at each link is fixed. It is observed that the route
selection does not have any effect on the form of this
tradeoff. By selecting the optimal route, we minimized
the end to end outage probability by minimizing

IV. IMPLEMENTATION AND RESULTS

Algorithm 3 describes the method for finding
initial centroids of the clusters [12]. Initially, compute the
distances between each data point and all other data
points in the set of data points. Then find out the closest
pair of data points and form a set A1 consisting of these
two data points, and delete them from the data point set
D. Then determine the data point which is closest to the
set A1, add it to A1 and delete it from D. Repeat this
procedure until the number of elements in the set A1
reaches a threshold. At that point go back to the second
step and form another data-point set A2. Repeat this till
’k’ such sets of data points are obtained. Finally the
initial centroids are obtained by averaging all the vectors
in each data-point set. The Euclidean distance is
used for determining the closeness of each data point
to the cluster centroids. In the first phase, the initial
centroids are determined systematically so as to
produce clusters with better accuracy [12]. The second
phase makes use of a variant of the clustering method
discussed in [4]. It starts by forming the initial clusters
based on the relative distance of each data-point
from the initial centroids. These clusters are
subsequently fine-tuned by using a heuristic approach,
thereby improving the efficiency. The two phases of the

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

65

20
11

O
ct
ob

er

D={d1,d2,…..dn} // set of n data points di, C= {

Implementation of K-Means Clustering Algorithm Using Java

enhanced method are described below as Algorithm 3
and Algorithm 4.

The first step in Phase 2 is to determine the
distance between each data-point and the initial
centroids of all the clusters. The data-points are then
assigned to the clusters having the closest centroids.
This results in an initial grouping of the data-points. For
each data-point, the cluster to which it is assigned
(ClusterId) and its distance from the centroid of the
nearest cluster (Nearest_Dist) are noted. Inclusion
of data-points in various clusters may lead to a change
in the values of the cluster centroids. For each cluster,
the centroids are recalculated by taking the mean of
the values of its data-points. Up to this step, the
procedure is almost similar to the original k-means
algorithm except that the initial centroids are
computed systematically The next stage is an iterative
process which makes use of a heuristic method to
improve the efficiency. During the iteration, the data-
points may get redistributed to different clusters.

 The method involves keeping track of the
distance between each data-point and the centroid of its
presentnearest cluster. At the beginning of the iteration,
the distance of each data-point from the new centroid of
its present nearest cluster is determined. If this distance
is less than or equal to the previous nearest distance,
that is an indication that the data point stays in that
cluster itself and there is no need to compute its
distance from other centroids. This results in the

saving of time required to compute the

distances to k-1
cluster centroids. On the other hand, if the new
centroid of the present nearest cluster is more distant
from the data-point than its previous centroid, there is a
chance for the data-point getting included in another
nearer cluster. In that case, it is required to determine
the distance of the data-point from all the cluster
centroids. Identify the new nearest cluster and record
the new value of the nearest distance. The loop is
repeated until no more data-points cross cluster
boundaries, which indicates the convergence criterion.
The heuristic

method described above results in

significant reduction in the number of computations and
thus improves the efficiency.

V.

OUTPUT

The modified algorithm is applied to
multidimensional gene expression data taken from the
UCI(university of california irvine) repository[7]. The input
dataare the iris data[10], the breast cancer data[11], the
e coli data[9], the echo cardiogram data[12], the yeast
data[13] and the height-weight data obtained from the
web site of disabled-world[8]. The results are compared
with that of the original k-means algorithm as well as
Enhanced k-means algorithm. Tables 6.1 to 6.6 show
the performance comparison of the three algorithms.
Figures 6.1 to 6.6 illustrate that the modified algorithm
provide better accuracy and efficiency compared to the
k-means and enhanced k-means methods.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

66

20
11

O
ct
ob

er
Implementation of K-Means Clustering Algorithm Using Java

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

67

20
11

O
ct
ob

er

Implementation of K-Means Clustering Algorithm Using Java

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

68

20
11

O
ct
ob

er
Implementation of K-Means Clustering Algorithm Using Java

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

69

20
11

O
ct
ob

er

Implementation of K-Means Clustering Algorithm Using Java

VI.

CONCLUSION

In this section we have shown how testing is
performed and different test cases are designed to test
the system for its performance as well as debugging
process. The validation of the test cases is also shown.
The k-means algorithm is widely used for

clustering
large sets of data. But the standard algorithm do not
always guarantee good results as the accuracy of the
final clusters depend on the selection of initial
centroids. Moreover, the computational complexity of
the standard algorithm is

objectionably high owing to
the

need to reassign the data points

a number of times,
during every iteration of the loop. This Project presents
an enhanced k-means algorithm which combines a
systematic method for finding initial centroids and

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
 V

er
si
on

 I

70

20
11

O
ct
ob

er

efficient way for assigning data points to clusters.

Implementation of K-Means Clustering Algorithm Using Java

	Implementation of K-Means Clustering Algorithm Using Java
	Authors

	Keywords
	I. INTRODUCTION
	a) Module design and organization
	i.
Fixed Transmission
	ii. End to End Reliability
	iii. Outage Diversity

	b) Algorithm: finding the initial centroids
	c) Algorithm: assigning data-points to clusters [1]

	II. CONCLUSION
	III. IMPLEMENTATION AND RESULTS
	IV. IMPLEMENTATION AND RESULTS
	V. OUTPUT
	VI. CONCLUSION

