
© 2011I . P.K. Suri, Sumit Mittal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

 Global Journal of Computer Science and Technology
Volume 11 Issue 18 Version 1.0 October 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Sim_Dsc: Simulator for Optimizing the Performance of Disk
Scheduling Algorithms

By P.K. Suri, Sumit Mittal
Kurukshetra University

Abstract - Disk scheduling involves a careful examination of pending requests to determine the most
efficient way to service these requests. A disk scheduler examines the positional relationship among
waiting requests, then reorders the queue so that the requests will be serviced with minimum seek.
The purpose of the study is to obtain the best scheduling algorithm based on the seek time, rotation
time and transfer time for moveable head disks. Keeping in view an attempt has been made to
design a simulator for optimizing the performance of disk scheduling algorithms using Box-Muller
transformation. The input for the simulator has been derived by using an algorithm for generating
pseudo random numbers which follows box-muller transformations. Simulator takes access time
which is generated using seek time, rotation time and transfer time, as the request of cylinder
numbers, current position of read/write head as inputs. On the basis of these inputs, total head
movement of each disk scheduling algorithm is calculated under various loads.

Keywords : disk scheduling algorithms, seek time, rotational delay, transfer time, access time, head
movement, box-muller transformation.

SimDscSimulator for Optimizing the Performance of Disk Scheduling Algorithms

Strictly as per the compliance and

regulations of:

GJCST-A Classification : F.2.1,G.1.6

Sim_Dsc: Simulator for Optimizing the
Performance of Disk Scheduling Algorithms

P.K. Suri α, Sumit MittalΩ

Abstract - Disk scheduling involves a careful examination of
pending requests to determine the most efficient way to
service these requests. A disk scheduler examines the
positional relationship among waiting requests, then reorders
the queue so that the requests will be serviced with minimum
seek. The purpose of the study is to obtain the best
scheduling algorithm based on the seek time, rotation time
and transfer time for moveable head disks. Keeping in view an
attempt has been made to design a simulator for optimizing
the performance of disk scheduling algorithms using Box-
Muller transformation. The input for the simulator has been
derived by using an algorithm for generating pseudo random
numbers which follows box-muller transformations. Simulator
takes access time which is generated using seek time, rotation
time and transfer time, as the request of cylinder numbers,
current position of read/write head as inputs. On the basis of
these inputs, total head movement of each disk scheduling
algorithm is calculated under various loads.
Keywords : disk scheduling algorithms, seek time,
rotational delay, transfer time, access time, head
movement, box-muller transformation.

I. INTRODUCTION
mong major responsibilities of operating system
disk scheduling is one of the important tasks to
use disk efficiently. For meeting these objective

disk drives should have fast access time and disk
bandwidth. Access time is improved by scheduling the
service of disk I/O in a good manner. Many processes
make request for reading/writing data on disk
simultaneously. As these requests sometimes makes
requests faster than serviced by the disk. Therefore, a
request queue has to hold disk requests. To reduce the
time spent seeking records, the request queue is
ordered in some manner. This process is called Disk
scheduling.

A disk-scheduling algorithm decides that which
request of cylinder is to be serviced when there are so
many requests. Various disk-scheduling algorithms are
used. However, there will be common criteria for
evaluating the performance of all these algorithms that is
total head movement. Each algorithm aims to minimise
the total head movement. The algorithms can be
evaluated by running them on a particular string of
randomly generated requests and computing the
access time of the moveable head disks.
Author α : Department of Computer Science & Applications,
Kurukshetra University, Kurukshetra, Haryana 136118, India.

Author Ω :

M.M. Institute of Computer Technology & Business
Management, M.M. University, Mullana, Ambala, Haryana, 133207,
India. E-mail : sumit_amb@yahoo.com

Access Time has two major components. First
one is Seek time and another on is Rotational Latency
Time. The Seek Time is the time taken by read/write
head to reach at a requested Cylinder/Track number
and later one the time taken by the disk to rotate the
desired sector under the read/write head. The disk
bandwidth is defined as the total

number of bytes
transferred, divided by the total time between first
request and completion of last transfer. Both the access
time and disk bandwidth can be improved by
scheduling the service of disk I/O in a good manner

[7].
The time taken by a disk to move the required data
under the read/write head is called rotational latency
time. A disk’s average rotational latency is simply half
the time it takes to complete one revolution.

a)

FCFS algorithm

This algorithm treats the requests of cylinders
as a FIFO queue.

Besides simplicity, this policy is
preferred because this ensures that no request can be
postponed indefinitely. This policy suffers from global
zigzag effect.

b)

SSTF

algorithm

This algorithm selects the request, which has
shortest seek from the current position of R/W head. As
this policy can leads to indefinite postponement of the
requests, which are not closer to R/W head. This policy
gives a substantial improvement in performance, but it
leads to problem of starvation.

c)

SCAN

algorithm

In this algorithm request is chosen for service
that requires the shortest seek in preferred direction &
do not change the direction until it reaches at the end of
the disk. After that head moves

in reverse direction and
services all the requests in the opposite direction. This
policy is also called as elevator algorithm.

d)

C-SCAN

algorithm

In C-Scan head moves only in one direction to
service the requests. When head moves in reverse
direction it does not service the incoming requests.
When head has completed its inward sweep, it jumps to
outermost cylinder without servicing the requests and
then it resumes its inward sweep.

A

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

1

20
11

O
ct
ob

er

e) Look (Up/Down) algorithm
In this, head goes only as far as the final

request in each direction. Then, it reverses direction
immediately, without going all the way to end of disk. It

 is appropriate to call the elevator algorithm as it
continuous in one direction until it reaches the last
request in that direction, then reverse direction.

f)

C-Look algorithm

This algorithm reduces the bias against request
located at the extreme ends of platters. When there is no
request on a current sweep in either direction (inward or
outward) the read/write head moves to the request
closest to the outer/inner cylinder and again begins the
next sweep.

II.

RELATED WORK

David M. Jacobson and John Wilkes [1]

have
discussed the disk scheduling algorithm based on
rotational position in their research paper. Disk
scheduling based on rotational position as well as disk
arm position is shown to provide improved performance.
The access time based algorithms match or

outperform
all the seek-time ones. The best of them is Aged
Shortest Access Time First, or ASATF, which forms a
continuum between FCFS and SATF. It is equal or
superior to the others in both mean response time and
variance over the entire useful range.

Daniel T. Joyce [3] in his article “An
Investigation of Disk Scheduling Algorithms Laboratory”
discussed the behaviour of disk scheduling algorithms
by using a simulation program. The program is used to
generate data that reflects the performance of the FCFS
and SSTF algorithms under a variety of conditions. For
each algorithm under each situation the program
simulates how the algorithm would handle the situation
and calculates the expected service time b/w requests,
the expected waiting time for a request and the standard
deviation of these waiting times.

Toby J. Teorey and Tad B. Pinkerton [4] has
discussed five well-known scheduling policies for
movable head disks. These policies are compared using
the performance criteria of expected seek time and
expected waiting time. The variance of waiting time is
introduced as another meaningful measure of
performance, showing possible discrimination against
individual requests. Then the choice of a utility function
to measure total performance including system oriented
and individual request oriented measures is described.

Helen D. Karatza [5] has discussed scheduling
in a distributed system. A simulation model is used to

address performance issues associated with
scheduling. Three policies which combine processor
and I/O scheduling are used to schedule parallel jobs
for a variety of workloads.

Hu

Ming [6] has discussed disk-scheduling
algorithms based on both disk arm and rotational
positions. Their time-resolving powers are more precise
in comparison with those for disk-scheduling algorithms
based only on disk arm position. For modem disks,
increase of disk rotation rate makes overhead of disk
access to data transfer heavier. Therefore, it seems
more important to improve both parallel processing
capability of disk I/O and disk-scheduling performance
at the same time.

III.

PROPOSED MODEL

In this research effort, the problem under study
is to optimize the performance of various disk
scheduling algorithms before these are actually followed
in any operating system and to design the simulator to
mimic the real behaviour of the system. Because the
seek distance between the position of head and position
of requesting cylinder at the time of request is the basic
need for evaluating the performance of the I/O system.
Thus an efficient Disk Scheduling algorithm can
enhance the performance of overall system whereas a
poorly design scheme can degrade the performance.
Thus to study the various algorithms, simulator is
designed.

A simulation of any process in which there are
inherently random components requires a method of
generating random numbers. Thus whenever simulator
is used, as a tool for research, there is need for
generating random numbers that are conveniently and
efficiently generated from a desired probability
distribution. The present research work uses box-muller
transformation for generation of cylinder numbers.

S = (-

2 loge (R1

))½ *

cos(2π

R2

)

Here S

is independent

random variables with a
normal distribution of standard deviation 1.

In present
research work, the foremost criterion for the evaluation
of disk scheduling algorithms is the access time
calculated by seek time, rotational delay and transfer
time that are produced by each policy under same set
of conditions and same workload. The workload here is
the cylinder numbers whose data is to be accessed to
perform I/O operation. This calculated access time is

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

2

20
11

O
c t
ob

er

used to find out the total head movement for various
disk scheduling algorithms.

TA = Ts + TR + TT
Where
TA (access time): sum of seek time, rotational latency
time and transfer time.

Suppose R1 and R2 are independent random
variables that are uniformly distributed in the interval
[0, 1].

Margo Seltzer, Peter Chen and John Ousterhout
[2] have jointly written a research paper “Disk
Scheduling Revisited”. In this paper, the invention of the
movable head disk has been discussed. These
techniques have been applied to systems with large
memories and potentially long disk queues. Disk
bandwidth utilisation can be improved by applying some
traditional disk scheduling techniques, which attempt to
optimise head movement and guarantee fairness in
response time.

Sim_Dsc: Simulator for Optimizing the Performance of Disk Scheduling Algorithms

http://en.wikipedia.org/wiki/Random_variable�
http://en.wikipedia.org/wiki/Random_variable�
http://en.wikipedia.org/wiki/Random_variable�
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)�
http://en.wikipedia.org/wiki/Interval_(mathematics)�
http://en.wikipedia.org/wiki/Statistical_independence�

TS

(seek time): time for the disk arm to move the heads
to the cylinder containing the desired sector.

TR

(rotational delay): time waiting for the disk to
rotate the desired sector to the disk head.

TT

(transfer time): the time it takes to transfer a block of
bits

to and from the disk.

Among these three, seek time has large
significant effect on the total access time of the disk. As
seek time is the time relating to cylinder number.
Therefore cylinder number and number of seek
movements are central point of consideration.

Simulator for Optimizing the Comparative Performance
of Disk Scheduling Algorithms

N

: no. of cylinders

NODE

: current position of moveable read/write head

R1/R2

: independent

random variables

in
the

interval

[0,

1]

TS

(i)

: seek time of N cylinders

TA

(i) : access time of N cylinders

TR

: rotational speed of the disk

TT

: transfer time between adjacent cylinders

RUNS

: no. of times the simulation process is repeated

RAND

: random number

L_TIME

: latency time to move the head from one to
another cylinder

CL[i] : left requests with respect to head position.

CR[j]

: right requests with respect to head position.

Algorithm to compute the access time to read/write a
disk

Step 1.

Read no. of cylinders for different workload.

Step 2.

Generate random numbers using the random
number generation method in the interval of [0, 1].

IV.

RESULTS

The best way to compare the result of different
algorithms is to present them in form of table depicting
the result in the form of rows and columns. Different test
cases are simulated by varying the number of randomly
generated cylinders and accordingly results are shown
as in Table 1/Table 2/Table 3.

Test case 1: No. of cylinders (Low Laod) =200

Test case 2: No. of cylinders (Medium Laod) =700

Test case 3: No. of cylinders

(Heavy Laod) =1200

Test Case 1: It is shown in the table 1 regarding
total head movement of different disk scheduling
algorithms in the case of low load on various simulation
runs.

two

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

3

20
11

O
ct
ob

er

Step 3. Compute the mean and standard deviation of
m-pseudo random numbers.
Step 4. Apply Box-Muller transformation to
calculate the value of S, using two random variates
between [0, 1].
Step 5. Using the values of mean, standard deviation
and S, calculate the value of x and store in an array x[i],
which can use as the number of requests.
Step 6. Call modules for all seven policies named FCFS
(), SSTF (), SCAN (), C-SCAN (), LOOK UP (), LOOK
DOWN () and C-LOOK ().
Step 7. Compute access time based on seek time,
rotational delay and transfer time produced by each
policy is returned to the main module.
Step 8. Each algorithm is run for 20000 times and
result of every 1000th run of each algorithm is displayed
in a table.
Step 9. Stop

Simulation
Runs

FCFS SSTF SCAN C-SCAN LOOK
(UP)

LOOK
(DN)

C-LOOK

1000 4065 574 289 376 187 107 194
2000 4677 459 2€84 325 199 146 229
3000 4629 1077 293 410 199 119 211
4000 3867 479 281 361 182 121 201
5000 4328 415 299 396 226 155 252
6000 4253 536 285 369 184 113 197
7000 4133 586 282 310 187 128 208
8000 4095 530 290 378 194 118 206
9000 4372 612 282 456 180 114 193

10000 4604 448 293 385 208 137 229
11000 4260 426 302 402 218 130 230
12000 4492 558 278 355 184 134 211
13000 4438 450 281 379 183 123 203
14000 3837 403 278 355 171 108 185
15000 4713 517 290 402 203 136 225
16000 4130 539 290 379 198 126 215
17000 4690 444 298 395 204 114 211
18000 4139 481 293 326 200 121 212
19000 4580 548 298 393 222 150 245
20000 4518 482 292 382 199 122 212

Table 1 : Total head movement for low load (No. of cylinders: 200)

Sim_Dsc: Simulator for Optimizing the Performance of Disk Scheduling Algorithms

http://en.wikipedia.org/wiki/Random_variable�
http://en.wikipedia.org/wiki/Interval_(mathematics)�

Test Case 2: It is shown in the table 2 regarding
total head movement of different disk scheduling

algorithms in the case of medium load on various
simulation runs.

Simulation Runs FCFS SSTF SCAN C -SCAN LOOK (UP) LOOK (DN) C - LOOK

1000 15730 1057 287 1297 199 137 223
2000 15520 1069 290 1359 215 160 249
3000 14302 947 299 1415 213 129 227
4000 15615 976 285 1325 208 161 245
5000 15438 1210 292 1427 205 134 225
6000 15253 1026 296 1382 215 142 237
7000 15683 1106 294 1350 231 180 273
8000 14991 1117 297 1402 233 175 271
9000 15959 1132 304 1372 238 164 267
10000 15072 1043 289 1415 221 175 263
11000 14662 1098 293 1318 210 141 233
12000 14926 1128 300 1365 233 166 265
13000 14034 1057 288 1380 200 136 223
14000 16468 1026 297 1426 220 149 245
15000 15466 1100 289 1402 206 145 233
16000 15024 1178 290 1379 201 132 221
17000 15252 1065 284 1424 205 158 241
18000 14442 1106 286 1408 198 138 223
19000 15238 1352 291 1392 211 149 239
20000 15617 1094 289 1310 206 145 233

Table 2 : Total head movement for medium load(No. of cylinders: 700)

Test Case 3: It is shown in the table 3 regarding
total head movement of different disk scheduling

algorithms in the case of heavy load on various
simulation runs.

Simulation Runs FCFS SSTF SCAN C - SCAN LOOK (UP) LOOK(DN) C - LOOK

1000 25629 1528 289 2397 209 151 239
2000 27118 1664 301 2382 240 177 277
3000 26256 1728 300 2356 223 146 245
4000 25234 1802 294 2326 228 174 267
5000 25969 1663 292 2415 215 154 245
6000 26546 1652 302 2340 233 160 261
7000 27861 1590 293 2502 224 169 261
8000 26404 1584 298 2448 228 162 259
9000 26019 1608 299 2397 229 161 259
10000 26055 1568 293 2415 215 151 243
11000 26978 1776 309 2345 242 157 265
12000 26299 1595 291 2300 210 147 237
13000 25891 1760 297 2417 222 153 249
14000 25360 1556 300 2397 233 166 265
15000 25035 1636 291 2396 226 179 268
16000 26601 1658 303 2318 248 187 289
17000 25792 1555 294 2368 217 152 245
18000 26916 1530 310 2420 250 170 279
19000 26671 1707 294 2382 213 144 237
20000 27463 1865 290 2392 212 154 243

Table 3 : Total head movement for heavy load (No. of cylinders: 1200)

V. DISCUSSION AND CONCLUSION

After analysing the results and findings of the
simulator, it might be concluded no single policy is best
in all situations. The performance do not depend upon
only on the number of requests but it also depends on

the position of read/write head & direction of the
movement of head and it varies with the variation in
number of requests even the current head position is
same. It has been also observed that if there is only one
outstanding request, then all the policies behave the
same.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

4

20
11

O
c t
ob

er
Sim_Dsc: Simulator for Optimizing the Performance of Disk Scheduling Algorithms

FCFS policy can be considered best for the
system, which has fewer loads of Input-output requests,
but in heavy load of requests, FCFS tends to saturate
the device. SSTF produced least number of head
movement in maximum runs as compared to FCFS.
Therefore this policy is the optimal policy. But this policy
can not be considered optimal as this policy has the
starvation problem. LOOK has no starvation problem.
But this policy has the overhead of decision variable,
which is used to decide the direction (inward or
outward) of read/write head. LOOK (Down) algorithm is
always better than as compared to LOOK (UP)
algorithm. C-Look disk scheduling algorithm performs
better for those systems which puts medium and heavy
load of requests on the disk. The graph 1 depicts the
head movement for different number of simulation runs
for FCFS algorithm under various loads.

Graph No. 1

The graph 2 depicts the head movement for
different number of simulation runs for SSTF algorithm
under various loads.

Graph No. 2

The graph 3 depicts the head movement for
different number of simulation runs for SCAN algorithm
under various loads.

The graph 4 depicts the head movement for
different number of simulation runs for C-SCAN
algorithm under various loads.

Graph No. 4

Comparative Study of FCFS Algorithm under
various loads

0
5000

10000
15000
20000
25000
30000

10
00

40
00

70
00

10
00

0

13
00

0

16
00

0

19
00

0

Simulation Runs

H
ea

d
 M

o
ve

m
en

t

Low
Medium
Heavy

Comparative Study of SSTF Algorithm under
various loads

0
500

1000
1500
2000

10
00

40
00

70
00

10
00

0

13
00

0

16
00

0

19
00

0

Simulation Runs

H
ea

d
 M

o
ve

m
en

t

Low
Medium
Heavy

Comparative Study of SCAN Algorithm under
various loads

260
270
280
290
300
310
320

10
00

40
00

70
00

10
00

0
13

00
0

16
00

0
19

00
0

Simulation Runs

H
ea

d
M

ov
em

en
t

Low
Medium
Heavy

Comparative Study of C-SCAN Algorithm
under various loads

300
800

1300
1800
2300
2800

10
00

40
00

70
00

10
00

0

13
00

0

16
00

0

19
00

0

Simulation Runs

H
ea

d
 M

o
ve

m
en

t

Low
Medium
Heavy

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

5

20
11

O
ct
ob

er

Graph No. 3

The graph 5 depicts the head movement for
different number of simulation runs for Look (UP)
algorithm under various loads.

Graph No. 5

Comparative Study of Look(UP) Algorithms
under various loads

150
170
190
210
230
250
270

10
00

40
00

70
00

10
00

0
13

00
0

16
00

0
19

00
0

Simulation Runs

H
ea

d
M

ov
em

en
t

Low
Medium
Heavy

The graph 6 depicts the head movement for
different number of simulation runs for Look (Down)
algorithm under various loads.

Sim_Dsc: Simulator for Optimizing the Performance of Disk Scheduling Algorithms

Graph No. 6

The graph 7 depicts the head movement for
different number of simulation runs for C-Look algorithm
under various loads.

Graph No. 7

REFERENCES

REFERENCES

REFERENCIAS

1.

David M. Jacobson and John Wilkes, “Disk
scheduling algorithms based on rotational position”
Hewlett Packard, May 1995.

2.

Margo Seltzer, Peter Chen and John Ousterhout,
“Disk Scheduling Revisited”,

Winter Usenix,
Washington, January 1990.

3.

Daniel T. Joyce, “An Investigation of Disk
Scheduling Algorithms Laboratory”, 2001.

4.

Toby J. Teorey and Tad B. Pinkerton, “A
comparative analysis of disk scheduling policies”,
March 1972, New York, NY, USA.

5.

Helen D. Karatza,”

A Comparative Analysis of
Scheduling Policies in A Distributed System Using
Simulation”,

Thessaloniki, Greece, 2000.

6.

Hu

Ming, “Improved disk scheduling algorithms
based on rotational position”,

October, 2005.

7.

Silberschatz A.,P.B.Galvin et. al., “Operating System
Concepts”, 6th

Edition, 2001.

8.

Muhammad Younus Javed, Ihsan llah Khan,
“Simulation and performance comparison of four
disk scheduling algorithms”, IEEE, 2000.

9.

Deo. Narsingh, “System Simulation with Digital
Computer”, 15th

edition, PHI,

New Delhi, India, 2002.

10.

Dietal H.M., “An Introduction to Operating Systems”,
Rev. 1st

Edition Reading, Addition-Wesley,

1984.

11.

Steven Robbins, “A Disk Head Scheduling
Simulator”, Norfolk, Virginia, USA, March, 2004.

Comparative Study of Look(Down) Algorithms
under various loads

100
120
140
160
180
200

10
00

40
00

70
00

10
00

0
13

00
0

16
00

0
19

00
0

Simulation Runs

H
ea

d
M

ov
em

en
t

Low
Medium
Heavy

Comparative Study of C-LOOK Algorithm
under various loads

150

200

250

300

10
00

40
00

70
00

10
00

0
13

00
0

16
00

0
19

00
0

Simulation Runs

H
ea

d
M

ov
em

en
t

Low
Medium
Heavy

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

6

20
11

O
c t
ob

er
Sim_Dsc: Simulator for Optimizing the Performance of Disk Scheduling Algorithms

	Sim_Dsc: Simulator for Optimizing the Performance of DiskScheduling Algorithms
	Authors
	Keywords
	I. INTRODUCTION
	a) FCFS algorithm
	b) SSTF algorithm
	c) SCAN algorithm
	d) C-SCAN algorithm
	e) Look (Up/Down) algorithm
	f) C-Look algorithm

	II. RELATED WORK
	III. PROPOSED MODEL
	IV. RESULTS
	V. DISCUSSION AND CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

