Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

10

11

12

13

14

15

16

17

18

19

20
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
4
42

Software Effort Estimation Using Particle Swarm Optimization
with Inertia Weight

CH.V.M.K.Hari! and Dr. Prasad Reddy?

L GITAM University

Received: 24 August 2011 Accepted: 19 September 2011 Published: 1 October 2011

Abstract

Software is the most expensive element of virtually all computer based systems. For complex
custom systems, a large effort estimation error can make the difference between profit and
loss. Cost (Effort) Overruns can be disastrous for the developer. The basic input for the effort
estimation is size of project. A number of models have been proposed to construct a relation
between software size and Effort; however we still have problems for effort estimation because
of uncertainty existing in the input information. Accurate software effort estimation is a
challenge in Industry. In this paper we are proposing three software effort estimation models
by using soft computing techniques: Particle Swarm Optimization with inertia weight for
tuning effort parameters. The performance of the developed models was tested by NASA
software project dataset. The developed models were able to provide good estimation
capabilities.

Index terms— PM- Person Months, KDLOC-Thousands of Delivered Lines of Code, PSO - Particle Swarm
Optimization, Software Cost Estimation

1 INTRODUCTION

he modern day software industry is all about efficiency. With the increase in the expanse and impact of modern
day software projects, the need for accurate requirement analysis early in the software development phase has
become pivotal. The provident allocation of the available resources and the judicious estimation of the essentials
form the basis of any planning and scheduling activity. For a given set of requirements, it is desirable to cognize
the amount of time and money required to deliver the project prolifically. The chief aim of software cost estimation
is to enable the client and the developer to perform a costbenefit analysis. The software, the hardware and the
human resources involved add up to the cost of a project. The cost / effort estimates are determined in terms of
person-months (pm) which can be easily interchanged to actual currency cost.

The basic input parameters for software cost estimation is size, measured in KDLOC (Kilo Delivered Lines
Of Code). A number of models have been evolved to establish the relation between Size and Effort ??13]. The
parameters of the algorithms are tuned using Genetic Algorithms [5], Fuzzy models [6] A common approach to
the estimation of the software effort is by expressing it is as a single variable function of the project size. The
equation of effort in terms of size is considered as follows:Effort= a * (Size) b (1)

Where a, b are constants. The constants are usually determined by regression analysis applied to historical
data.

2 b) Standard PSO with Inertia Weights

In order to meet the needs of modern day problems several optimization techniques have come been introduced.
When the search space is too large to search exhaustively, population based searches may be a good alternative,
however, population based search techniques cannot guarantee you the optimal (best) solution. We will discuss a
population based search technique, Particle Swarm Optimization (PSO) with Inertia Weights [Shi and ??berhart

43
44
45
46
47
48
49
50
51
52
53
54

55

56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

7

78

79
80
81
82
83
84

85

86
87
88
89
90
91
92
93
94
95
96
97
98

6 A) METHODOLOGY (ALOGORITHM)

1998]. Particle Swarm has two primary operators: Velocity update and Position update. During each generation
each particle is accelerated toward the particles previous best position and the global best position. At each
iteration a new velocity value for each particle is calculated based on its current velocity, the distance from its
previous best position, and the distance from the global best position. The new velocity value is then used to
calculate the next position of the particle in the search space. The inertia weight is multiplied by the previous
velocity in the standard velocity equation and is linearly decreased throughout the run. This process is then
iterated a set number of times or until a minimum error is achieved.

The basic concept of PSO lies in accelerating each particle towards its Pbest and Gbest locations with regard to
a random weighted acceleration at each time. The modifications of the particle’s positions can be mathematically
modeled by making use of the following equations:Vik+1l =w* Vik + ¢ 1 *rand() 1 * (Pbest -Sik) + c 2
*rand() 2 * (Gbest -Sik)(2)Sik+l1=Sik + Vik(3)

Where, S ik is current search point, S i

3 THE STANDARD PSO WITH INERTIA WEIGHT FOR
SOFTWARE EFFORT ESTIMATION

The software effort is expressed as a function of a single variable of effort in terms of the project size as shown in
equation-1. The parameters a, b are measured by using regression analysis applied to historical data. In order
to tune these parameters we use the standard PSO with inertia weights. A nonzero inertia weight introduces
a preference for the particle to continue moving in the same direction it was going on the previous iteration.
Decreasing the inertia over time introduces a shift from the exploratory (global search) to the exploitative (local
search) mode. The updating of weighting function is done with the following formula.W new = [(T mi -T ci) *
(Wiv-Wifv)]/ Tmi+ W fv(4)

Where W new is new weight factor, T mi is the maxium numer of iteration specified, T ci is the current
iteration number, W iv is the initial value of the weight, W fv is the final value of the weight. Empirical
experiments have been performed with an inertia weight set to decrease linearly from 0.9 to 0.4 during the course
of simulation. In the first experiment we keep the parameters c1 and c¢2 (weighting factors) fixed, while for the
following experiment we change cl and c2 (weighting factors) during subsequent iterations by employing the
following equations [Rotnaweera, A. Halgamog S.K. and Watson H.C, 2004].

C1(t) =25-2%* (t / max_iter), which is the cognitive learning factor.

05

C 2 (t) = 0.5 + 2* (t / max__iter), which is the social coefficient.

The particles are initialized with random position and velocity vectors the fitness function is evaluated and
the Pbest and Gbest of all particles is found out. The particles adjust their velocity according to their Pbest and
Gbest values. This process is repeated until the particles exhaust or some specified number of iterations takes
place. The Gbest particle parameters at the end of the process are the resultant parameters.

4 III.
5 MODEL DESCRIPTION

In this model we have considered "The standard PSO with inertia weights” with /without changing the weighting
factors (c1, c2). PSO is a robust stochastic optimization technique based on the movement of swarms. This swarm
behavior is used for tuning the parameters of the Cost/Effort estimation. As the PSO is a random weighted
probabilistic model the previous benchmark data is required to tune the parameters, based on that data, swarms
develop their intelligence and empower themselves to move towards the solution.

The following is the methodology employed to tune the parameters in each proposed models following it.

6 a) METHODOLOGY (ALOGORITHM)

Input: Size of Software Projects, Measured Efforts, Methodology (Effort Adjustment factor-EAF). Output:
Optimized Parameters for Estimating Effort.

The following is the methodology used to tune the parameters in the proposed models for Software Effort
Estimation.

Step 1: Initialize "n” particles with random positions P i and velocity vectors V i of tuning parameters .We
also need the range of velocity between [-V max ,V max |. The Initial positions of each particle are Personally
Best for each Particle.

Step 2: Initialize the weight function value w with 0.5 and weightening parameters cognitive learning factor
cl, social coefficient ¢2 with 2.0.

Step 3: Repeat the following steps 4 to 9 until number of iterations specified by the user or Particles Exhaust.

Step 4: for i = 1,2, 7?7, n do // For all the Particles For each particle position with values of tuning parameters,
evaluate the fitness function. The fitness function here is Mean Absolute Relative Error (MARE). The objective
in this method is to minimize the MARE by selecting appropriate values from the ranges specified in step 1.

100
101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145

146

147

148
149
150
151

152

153
154

Step 5: Here the Pbest is determined for each particle by evaluating and comparing measured effort and
estimated effort values of the current and previous parameters values. If fitness (p) better than fitness (Pbest)
then: Pbest = p.

Step 6: Set the best of 'Pbests’ as global best -Gbest. The particle value for which the variation between the
estimated and measured effort is the least is chosen as the Gbest particle.

Step 7: Update the weightening function is done by the following formulaW new = [(T mi-T ci) * (W iv
-Wiv)]/ Tmi+ W fv(7)

Step 8: Update the weightening factors is done with the following equations for faster convergence.

Step 9: Update the velocity and positions of the tuning parameters with the following equations for j = 1, 2,
?7?7?7m do // For number of Parameters, our case m is 2or 3 or 4 beginV jik+1 =w *Vjik +c1 *rand() 1 *
(Pbest -S jik) + ¢ 2 * rand() 2 * (Gbest -S ji k)(10)S ji k+1 = S ji k + V ji k+1(11)

end;

Step 10: Give the Gbest values as the optimal solution.

Step 11: Stop b) PROPOSED MODELS i. MODEL 1:

A prefatory approach to estimating effort is to make it a function of a single variable , often this variable is
project size measure in KDLOC (kilo delivered lines of code) and the equation is given as , Effort = a (size) b
Now in our model the parameters are tuned using above PSO methodology.The Update of velocity and positions
of Parameter 7a” isV ai k+1 = w * Vaik + ¢ 1 * rand() 1 * (Pbest -S ai k) + ¢ 2 * rand() 2 * (Gbest -S ai k
)(12)

Saik+l=Saik+ Vaik+1

The Update of velocity and positions of Parameter ”b” isV bi k+1 = w * V bi k + ¢ 1 * rand() 1 * (Pbest -S
bik)+ ¢ 2 *rand() 2 * (Gbest -S bi k) S bi k+1 = S bi k + V bi k+1 Table 1 : Effort Multipliers ii. MODEL
2:

Instead of having resources estimates as a function of one variable, resources estimates can depend on many
different factors, giving rise to multivariable models. Such models are useful as they take into account the subtle
aspects of each project such as their complexity or other such factors which usually create a non linearity. The
cost factors considered are shown below. The product of all the above cost factors is the Effort Adjustment
Factor (EAF).A model of this category starts with an initial estimate determined by using the strategic single
variable model equations and adjusting the estimates based on other variable which is methodology. The equation
is,Effort = a *(size) b + c* (ME).

Where ME is the methodology used in the project. The parameters a, b, ¢ are tuned by using above PSO
methodology. The Update of velocity and positions of Parameter ”a”, "b” are shown in Model 1 and Parameter
7¢”isVeik+l =w*Veik+cl*rand() 1 * (Pbest-Scik)+ ¢ 2 *rand() 2 * (Gbest -Scik) Scik+1 =S
cik + V ci k+1 iii. MODEL 3

There are a lot of factors causing uncertainty and non linearity in the input parameters. In some projects
the size is low while the methodology is high and the complexity is high, for other projects size is huge but the
complexity is low. As per the above two models size and effort are directly proportional. But such a condition
is not always satisfied giving rise to eccentric inputs. This can be accounted for by introducing a biasing factor
(d). So the effort estimation equation is: The Update of velocity and positions of Parameter ”a”, ”b”, 7c¢” are
shown in Model 1,2 and Parameter ”d” isV di k+1 =w * Vdik + ¢ 1 *rand() 1 * (Pbest -Sdik) +c2 *
rand() 2 * (Gbest -Sdik) Sdik+1 =Sdik + V di k+1

IV.

7 MODEL ANALYSIS a) Implementation

We have implemented the above methodology for tuning parameters a,b,c and d in ”C” language. For the
parameter’ a 'the velocities and positions of the Where ME represents Measured Effort, EE represents Estimated
Effort.

V.

8 MODEL EXPERIMENTATION
9 EXPERIMENT -1:

For the study of these models we have taken data of 10 NASA ?713] Table 7?7 : NASA software projects data By
running the "C” implementation of the above methodology we obtain the following parameters for the proposed
models. The following are the results obtained by running the above PSO algorithm implemented in ”C” with
changing weighting factors on each iteration. VI.

10 RESULTS AND DISCUSSIONS

The following table shows estimated effort of our proposed model:
EXPERIMENT -1:

155
156
157
158
159
160
161
162
163

164

12 TAD GONSALVES

11 CONCLUSION

Software cost estimation is based on a probabilistic model and hence it does not generate exact values. However if
good historical data is provided and a systematic technique is employed we can generate better results. Accuracy
of the model is measured in terms of its error rate and it is desirable to be as close to the actual values as possible.
In this study we have proposed new models to estimate the software effort. In order to tune the parameters we
use particle swarm optimization methodology algorithm. It is observed that PSO gives more accurate results
when juxtaposed with its other counterparts. On testing the performance of the model in terms of the MARE,
VARE and VAF the results were found to be futile. These techniques can be applied to other software effort
models.

12 Tad Gonsalves

Figure 1:

'© 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue
XVIII Version I 16 2011 October Software Effort Estimation Using Particle Swarm Optimization with Inertia
Weight

2© 2011 Global Journals Inc. (US) . Software Effort Estimation Using Particle Swarm Optimization with
Inertia Weight

COsT - -
FACT ORS DE SCRIPTION BATING
VEREY 2 YVERY
L OGN LOWs CARIIVAL | HICH HICH
Product
RELY Required software mliability 075 058 1 115 14
DAT! Datbaze == - 004 1 1.08 1.14
CPLY Product complexity 0.7 085 1 1.1% 13
C omipcer
TIME Exacution bme constmint - - 1 1.11 153
STOR Wain storage constraint - - 1 1.06 1.21
YVIRT Virtua machine volatility - 87 1 1.15 13
TURN Competer turnaround ime - 0.37 1 1.07 115
Personnel
ACAD Analvst capability 146 1.19 1 .84 071
AEXP Application experience 1329 1.13 1 (.91 (.32
PCAP Programmer capabiliby 142 117 1 .86 0.7
VEXD Wirtyal machne volatility 121 11 1 04 L.
LEXP Lansuvazz experiznce 114 107 1 .05 -
Project
MODE Modern programming 124 1.1 1 0.91 0.82
prachce
TOOL Roftwara tools 124 11 1 .81 (.83
RCED Development schadule 125 1.08 1 14 1.1
Figure 2:
ESTIMATED EFFCRTOF OUR ESTIMATED EFFORTOF QLR
) MEASUR | MOLELS C1.C2 ARE CONSTANT MODELS C1.02 ARE CHANGED
SIZE H_E%T METHODOLOGY | DURDMNG THE ITERATION (CASE-T) | DURDNG THE ITERATICR(CASE-TN)
AODEL-I | MODEL-I | MODEL-II | MODEL] | MODEL-D AOTEL-ID
2.1 5 18 SO00002 | 4008887 | 5000007 | 5.000002 | 5502722 5.000001
31 7 16 §082786 | 7047025 7.07543 | 6.082786 | 7.0T1439 6.975012
4.1 o 19 o060186 | ©222874 | BooD250 | D.0601B6 | B47ISE 0154642
125 PLEL 7 2308620 | 2340447 | 2405540 | 2308820 | 2185101 2282118
4635 w 10 712203 | 7175306 | 7184814 | 712203 | 5£3.2413% 71 03000
343 o8 10 gla1702 | 8210557 | 8204368 | 8161702 | 7283041 81 44035
67.5 o34 19 oB05368 | on3ooes | om3ocoR | oROsS368 | 06.18065 2 ©7.70541
TR & LA 33 1117206 | 1110440 | 11185326 | 111.7206 | 1107037 1114512
o0l 1158 30 1257302 | 12538721 | 125048 | 1257302 | 1250572 1256834
1008 1383 34 1383002 | 1383003 | 1372231 | 1383002 | 138523 1382000
Figure 3: ©

12

TAD GONSALVES

Mean Variance
Mots VAT 00| e | Al
Error (%) | Error (%)
Bailey —Basili Estimate 03.147 17.325 1.21
Alaa F. Sheta G.E. Model I Estimate 08.41 26.488 6.079
Alaa F. Sheta Model IT Estimate 08.929 44.745 23.804
Harish model1 98.5 12.17 80.859
Harish model2 99.15 10.803 225
CASE-IMODEL -I 98.92 4.6397 0.271
CASE-IMODEL-II 08.92 46122 0.255
CASE-IMODEL-III 98.9 4.4373 0.282
CASE-IIMODEL -I 08.92 4.6397 0.271
CASE-IIMODEL-II 08.89 7.5 0.253
CASE-II MODEL-III 08.95 4.9 0.257

Figure 4: Model 1 :

Fig 1 : Measured Effort Vs Estimated Efforts of

Proposed Models

COMPARISON WITH OTHER MODELS

Refer Table 4 for the comparison with other models.

Figure 5: Table 3 :

2011
October
18
Project
No

13

10

11

17

3

4

6

15

1

18

Size In
KDLOC
2.1

3.1

4.2
12.5
46.5
54.5
67.5
78.6
90.2
100.8

Methodology
(ME)
28

26

19

27

19

20

29

35

30

34

Figure 6:

Figure 7: Table 5 :

Measured
Effort
5

7

9

23.9
79
90.8
98.4
98.7
115.8
138.3

12 TAD GONSALVES

Techniques”, 2008 IEEE Congress
on Evolutionary

, Atsushi Ito, Ryo Kawabata and
Kiyoshi Itoh , Swarm Intelligence
in the Optimization of Software De-
velopment Project Schedule, 0730-
Computation (CEC 2008), 978-1-
4244-1823-7/08

3157/08 , 2008 IEEE. 8. J.S.Pahariya ,V. Ravi, M. Carr, Software Cost Estimation using Computational Inf

Biologically Inspired Computing
(NaBIC 2009).
9. 20 2011 Octo- International Journal of Software
ber Engineering, IJSE Vol.3 Table 4 :
Measured Efforts of Various Models

[Note: © 2011 Global Journals Inc. (US)]

Figure 8:

166
167

168
169

170
171

172
173

174
175

176

[Sheta et al.] Development of Software Effort and Schedule Estimation Models Using Soft Computing, Alaa Sheta
, David Rine , Aladdin Ayesh .

[Robert et al. ()] Elitist Multi evolutionary algorithm for environmental/economic dispatch, T F Robert , Ah
King , C S Harry , Rughooputh . 2003. IEEE.

[Sheta] ‘Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects’.
Alaa F Sheta . Journal of Computer Science 1549-36362006. 2 (2) p. .

[Coello Coello ()] Ewvolutionary Algorithms for Solving Multi-Objective Problems, C A Coello Coello . 2002.
Kluwer.

[Goldberg ()] Genetic Algorithms in Search, Optimization and Machine Learning, D E Goldberg . 1989. Addison-
Wesley.

[Deb ()] Multi-Objective Optimization Using Evolutionary Algorithms, K Deb . 2002. John Wiley and Sons.

