
© 2011I . Prasad Reddy.P.V.G.D, Ch.V.M.K.Hari. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Software Effort Estimation Using Particle Swarm Optimization
with Inertia Weight

By Prasad Reddy.P.V.G.D, Ch.V.M.K.Hari
Andhra University

Abstract - Software is the most expensive element of virtually all computer based systems. For
complex custom systems, a large effort estimation error can make the difference between profit
and loss. Cost (Effort) Overruns can be disastrous for the developer. The basic input for the effort
estimation is size of project. A number of models have been proposed to construct a relation
between software size and Effort; however we still have problems for effort estimation because of
uncertainty existing in the input information. Accurate software effort estimation is a challenge in
Industry. In this paper we are proposing three software effort estimation models by using soft
computing techniques: Particle Swarm Optimization with inertia weight for tuning effort
parameters. The performance of the developed models was tested by NASA software project
dataset. The developed models were able to provide good estimation capabilities.

Keywords : PM- Person Months, KDLOC-Thousands of Delivered Lines of Code, PSO - Particle
Swarm Optimization, Software Cost Estimation

Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology
Volume 11 Issue 18 Version 1.0 October 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

GJCST-C Classification : D.2.9

Software Effort Estimation Using Particle Swarm
Optimization with Inertia Weight

Prasad Reddy.P.V.G.D α, Ch.V.M.K.Hari Ω

Abstract - Software is the most expensive element of virtually
all computer based systems. For complex custom systems, a
large effort estimation error can make the difference between
profit and loss. Cost (Effort) Overruns can be disastrous for the
developer. The basic input for the effort estimation is size of
project. A number of models have been proposed to construct
a relation between software size and Effort; however we still
have problems for effort estimation because of uncertainty
existing in the input information. Accurate software effort
estimation is a challenge in Industry. In this paper we are
proposing three software effort estimation models by using
soft computing techniques: Particle Swarm Optimization with
inertia weight for tuning effort parameters. The performance of
the developed models was tested by NASA software project
dataset. The developed models were able to provide good
estimation capabilities.
Index Terms : PM- Person Months, KDLOC-Thousands
of Delivered Lines of Code, PSO - Particle Swarm
Optimization, Software Cost Estimation.

I. INTRODUCTION

he modern day software industry is all about
efficiency. With the increase in the expanse and
impact of modern day software projects, the need

for accurate requirement analysis early in the software
development phase has become pivotal. The provident
allocation of the available resources and the judicious
estimation of the essentials form the basis of any
planning and scheduling activity. For a given set of
requirements, it is desirable to cognize the amount of
time and money required to deliver the project
prolifically. The chief aim of software cost estimation is to
enable the client and the developer to perform a cost –
benefit analysis. The software, the hardware and the
human resources involved add up to the cost of a
project. The cost / effort estimates are determined in
terms of person-months (pm) which can be easily
interchanged to actual currency cost.

The basic input parameters for software cost
estimation is size, measured in KDLOC (Kilo Delivered
Lines Of Code). A number of models have been evolved
to establish the relation between Size and Effort [13].
The parameters of the algorithms are tuned using
Genetic Algorithms [5], Fuzzy models [6], Soft-
Computing Techniques [7][9][10], Computational
Intelligence Techniques[8],Heuristic Algorithms, Neural
Networks, Radial Basis and Regression [11][12] .

Author α

: Department of Computer Science & Systems Engineering,

Andhra University. E-mail : prasadreddy.vizag@gmail.com

Author Ω

: Department of IT, Gitam Institute of Technology, GITAM

University.

E-mail : kurmahari@gmail.com

a) Basic Effort Model
A common approach to the estimation of the

software effort is by expressing it is as a single variable
function of the project size. The equation of effort in
terms of size is considered as follows:

Effort= a * (Size) b
 (1)

Where a, b are constants. The constants are
usually determined by regression analysis applied to
historical data.

 b)

Standard PSO with Inertia Weights
 In order to meet the needs of modern day

problems several optimization techniques have come
been introduced. When the search space is too large to
search exhaustively, population based searches may be
a good alternative, however, population based search
techniques cannot guarantee you the optimal (best)
solution. We will discuss a population based search
technique, Particle Swarm Optimization (PSO) with
Inertia Weights [Shi and Eberhart 1998]. Particle Swarm
has two primary

operators: Velocity update and Position

update. During each generation each particle is
accelerated toward the particles previous best position
and the global best position. At each iteration a new
velocity value for each particle is calculated based on its
current velocity, the distance from its previous best
position, and the distance from the global best position.
The new velocity value is then used to calculate the next
position of the particle in the search space. The inertia
weight is multiplied by the previous velocity in the
standard velocity equation and is linearly decreased
throughout the run. This process is then iterated a set
number of times or until a minimum error is achieved.

 The basic concept of PSO lies in accelerating
each particle towards its Pbest and Gbest locations with
regard to a random weighted acceleration at each time.
The modifications of the particle’s positions can be
mathematically modeled by making use of the following
equations:

 Vi
k+1 = w

* Vi

k + c1 * rand()1 * (Pbest –

Si
k) + c2 *

rand()2 * (Gbest

–

Si

k)

(2)

Si
k+1 = Si

k + Vi
k

 (3)

 Where,
Si

k is current search point,
Si

k+1 is modified search point,

T

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

15

20
11

O
ct
ob

er

Vi
k is the current velocity,

 Vk+1

is the modified velocity,

 Vpbest

is the velocity based on Pbest ,

 Vgbest = velocity based on Gbest,
 w

is the weighting function,

 cj

is the weighting factors,

 Rand() are uniformly distributed random
numbers between 0 and 1.

II.

THE STANDARD PSO

WITH INERTIA

WEIGHT FOR SOFTWARE EFFORT
ESTIMATION

The software effort is expressed as a function of

a single variable of effort in terms of the project size as
shown in equation-1. The parameters a, b are measured
by using regression analysis applied to historical data. In
order to tune these parameters we use the standard
PSO with inertia weights. A nonzero inertia weight
introduces a preference for the particle to continue
moving in the same direction it was going on the
previous iteration. Decreasing the inertia over time
introduces a shift from the exploratory (global search) to
the exploitative (local search) mode. The updating of
weighting function is done with the following formula.

Wnew = [(Tmi

–

Tci) * (Wiv
–

Wfv)] / Tmi

+ Wfv (4)

Where
Wnew is new weight factor,
Tmi is the maxium numer of iteration specified,
Tci is the current iteration number,
Wiv is the initial value of the weight,
Wfv is the final value of the weight.

Empirical experiments have been performed
with an inertia weight set to decrease linearly from 0.9 to
0.4 during the course of simulation. In the first
experiment we keep the parameters c1 and c2
(weighting factors) fixed, while for the following
experiment we change c1 and c2 (weighting factors)
during subsequent iterations by employing the following
equations [Rotnaweera, A. Halgamog S.K. and Watson
H.C, 2004].
C1(t) = 2.5 – 2 * (t / max_iter), which is the cognitive
learning factor. (5)

C2 (t) = 0.5 + 2* (t / max_iter), which is the social
coefficient. (6)

 The particles are initialized with random position
and velocity vectors the fitness function is evaluated and
the Pbest and Gbest of all particles is found out. The
particles adjust their velocity according to their Pbest
and Gbest values. This process is repeated until the
particles exhaust or some specified number of iterations
takes place. The Gbest particle parameters at the end of
the process are the resultant parameters.

III. MODEL DESCRIPTION

In this model we have considered “The standard
PSO with inertia weights” with /without changing the
weighting factors (c1, c2). PSO is a robust stochastic
optimization technique based on the movement of
swarms. This swarm behavior is used for tuning the
parameters of the Cost/Effort estimation. As the PSO is a
random weighted probabilistic model the previous
benchmark data is required to tune the parameters,
based on that data, swarms develop their intelligence
and empower themselves to move towards the solution.
The following is the methodology employed to tune the
parameters in each proposed models following it.

a) METHODOLOGY (ALOGORITHM)

Input: Size of Software Projects, Measured Efforts,
Methodology (Effort Adjustment factor-EAF).
Output: Optimized Parameters for Estimating Effort.

The following is the methodology used to tune
the parameters in the proposed models for Software
Effort Estimation.

Step 1: Initialize “n” particles with random positions Pi

 and velocity vectors Vi

of tuning parameters .We also

need the range of velocity between [-

Vmax,Vmax]. The

Initial positions of each particle are Personally Best for
each Particle.

 Step 2: Initialize the weight function value w with 0.5 and
weightening parameters cognitive learning factor c1,
social coefficient c2 with 2.0.

 Step 3:

Repeat the following steps 4 to 9 until number of

iterations specified by the user or Particles Exhaust.
 Step 4:

for i = 1,2,

………, n do // For all the Particles

 For each particle position with values of tuning
parameters, evaluate the fitness function. The fitness
function here is Mean Absolute Relative Error (MARE).
The objective in this method is to minimize the MARE by
selecting appropriate values from the ranges specified in
step 1.

 Step 5:

Here the Pbest is determined for each particle by

evaluating and comparing measured effort and
estimated effort values of the current and previous
parameters values.

If fitness (p) better than fitness

(Pbest) then: Pbest = p.

Step 6: Set the best of ‘Pbests’ as global best – Gbest.
The particle value for which the variation between the
estimated and measured effort is the least is chosen as
the Gbest particle.
Step 7: Update the weightening function is done by the
following formula

 Wnew

=

[(Tmi

–

Tci) * (Wiv

–

Wfv)] /

Tmi

+ Wfv

 (7)

Step 8: Update the weightening factors is done with the
following equations for faster convergence.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

16

20
11

O
ct
ob

er
Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

Step 9: Update the velocity and positions of the tuning
parameters with the following equations for j = 1, 2,
…………m do // For number of Parameters, our case
m is 2or 3 or 4

begin

Vji
k+1 = w

* Vji
k

+ c1 * rand()1 * (Pbest –

Sji
k) + c2

*

rand()2 * (Gbest –

Sji
k)

(10)

S ji
k+1 = S ji

k

+ V ji
k+1

 (11)

end;

Step 10:

Give the Gbest values as the optimal solution.

Step 11:

Stop

b)

PROPOSED MODELS

i.

MODEL 1:

A prefatory approach to estimating effort is to
make it a function of a single variable , often this variable
is project size measure in KDLOC (kilo delivered lines of
code) and the equation is given as ,

Effort = a (size)b

Now in our model the parameters are tuned
using above PSO methodology.The Update of velocity
and positions of Parameter “a” is

Vai
k+1 = w

* Vai
k + c1

* rand()1

* (Pbest –

Sai
k) + c2 *

rand()2

* (Gbest –

Sai
k)

(12)

Sai
k+1 = Sai

k

+ Vai
k+1

The Update of velocity and positions of Parameter “b” is

Vbi
k+1 = w

* Vbi
k + c1

* rand()1

* (Pbest –

Sbi
k) + c2 *

rand()2

* (Gbest –

Sbi
k)

Sbi
k+1 = Sbi

k

+ Vbi
k+1

Table 1

:

Effort Multipliers

ii.

MODEL 2:

Instead of having resources estimates as a
function of one variable, resources estimates can
depend on many different factors, giving rise to
multivariable models. Such models are useful as they
take into account the subtle aspects of each project
such as their complexity or other such factors which
usually create a non linearity. The cost factors
considered are shown below. The product of all the
above cost factors is the Effort Adjustment Factor
(EAF).A model of this category starts with an initial
estimate determined by using the strategic single
variable model equations and adjusting the estimates
based on other variable which is methodology.

The equation is,

Effort = a *(size)b

+ c* (ME).

Where ME is the methodology used in the
project.

The parameters a, b, c are tuned by using
above PSO methodology.

The Update of velocity and
positions of Parameter “a”, “b” are shown in Model 1
and Parameter “c” is

Vci
k+1 = w

* Vci
k + c1

* rand()1

* (Pbest –

Sci
k) + c2 *

rand()2

* (Gbest –

Sci
k)

Sci
k+1 = Sci

k

+ Vci
k+1

iii.

MODEL 3

There are a lot of factors causing uncertainty
and non linearity in the input parameters. In some
projects the size is low while the methodology is high
and the complexity is high, for other projects size is
huge but the complexity is low. As per the above two
models size and effort are directly proportional. But
such a condition is not always satisfied giving rise to
eccentric inputs. This can be accounted for by
introducing a biasing factor (d). So the effort estimation
equation is:

Effort = a *(size)b

+ c* (ME).+ d

a,b,c,d parameters are tuned by using above PSO
methodology.

The Update of velocity and positions of
Parameter “a”, “b”, “c” are shown in Model 1,2 and
Parameter “d” is

Vdi
k+1 = w

* Vdi
k + c1

* rand()1

* (Pbest –

Sdi
k) +

c2 *
rand()2 * (Gbest –

Sdi
k)

Sdi
k+1 = Sdi

k

+ Vdi
k+1

IV.

MODEL ANALYSIS

a)

Implementation

We have implemented the above methodology
for tuning parameters a,b,c and d in “C” language.

For
the parameter’ a ‘the velocities and positions of the

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

17

20
11

O
ct
ob

er

C1(t) = 2.5 – 2 * (Tci / Tmi) (8)

 C2 (t) = 0.5 + 2* (Tci / Tmi), (9)

Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

constant. For the second experiment we changed the
C1, C2 weighting factors by using equations 4 and 5.

b)

Performance Measures

We consider three performance criterions:

1)

Variance accounted –

For(VAF)

 %VAF = �1-
var

�ME-EE�
var (ME)

�× 100

2)

Mean Absolute Relative Error

%MARE=

mean �
abs(ME-EE)

(ME)
�×100

3)

Variance Absolute Relative Error (VARE)

%VARE=

var

�
abs(ME-EE)

(ME)
�×100

Where ME represents Measured Effort, EE
represents Estimated Effort.

V.

MODEL EXPERIMENTATION

EXPERIMENT –

1:

For the study of these models we have taken
data of 10 NASA [13]

Table 2

:

NASA software projects data

By running the “C” implementation of the above
methodology we obtain the following parameters for the
proposed

models.

Model 1: a=2.646251 and b=0.857612 .

The range of a is [1, 10] and b is [-5,5] .

Model 2: a=2.771722, b=0.847952 and c= -0.007171.

The range of a is [1, 10], b is [-5,5] and c is [-1,1].

Model 3: a =3.131606,

b=0.820175,

c=0.045208 and
d= -2.020790.

The ranges are a[1,10],b[-5,5], c[-1,1] and

EXPERIMENT -2:

The following are the results obtained by
running the above PSO algorithm implemented in “C”
with changing weighting factors on each iteration.

Model 1: a=2.646251 and b=0.857612.

The

range of a is [1,10] and b is[-5,5]

Model 2: a=1.982430, b=0.917533 and c= 0.056668.

The range of a,

b, c is [1, 10],

[-5, 5] and [-1, 1]
respectively.

Model 3: a= 2.529550,

b= h0.867292,

c= -0.020757
and

d=0.767248.

The ranges of a,b,c,d is [1,10] , [-5,5] , [-1,1] and [0,20]
respectively.

VI.

RESULTS AND DISCUSSIONS

The following table shows estimated effort of our
proposed model:

EXPERIMENT -1:

Table 3

:

Estimated Efforts of Proposed Models

Fig 1

:

Measured Effort Vs Estimated Efforts of
Proposed Models

COMPARISON WITH OTHER MODELS

Refer Table 4 for the comparison with other models.

0
20
40
60
80

100
120
140
160

2.
1

3.
1

4.
2

12
. 5

46
.5

54
.5

67
.5

78
.6

90
.2

10
0.

8

MEASURED EFFORT VS ESTIMATED EFFORT
MEASURED EFFORT

CASE-I MODEL-I

CASE-I MODEL-II

CASE-IMODEL-III

CASE-II MODEL-I

CASE-II MODEL-II

CASE-II MODEL-III

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

18

20
11

O
ct
ob

er

Project
No

Size In
KDLOC

Methodology
(ME)

Measured
Effort

 13 2.1 28 5
10 3.1 26 7
11 4.2 19 9
17 12.5 27 23.9
3 46.5 19 79
4 54.5 20 90.8
6 67.5 29 98.4
15 78.6 35 98.7
1 90.2 30 115.8
18 100.8 34 138.3

Vai
k+1 = w * Vai

k + c1* rand1 * (Pbesta – Sai
k) + c2* rand2*

(Gbest – Sai
k)

Sai
k+1 = Sai

k + Vai
k+1 , w=0.5 , c1=c2=2.0.

And similarly for the parameters b,c and d the
values are obtained for the first experiment and weight
factor w changed during the iteration and C1 and C2 are

particles are updated by applying the following
equations:

d[1,20]. respectively.

Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

19

20
11

O
ct
ob

er

VII. PERFORMANCE ANALYSIS

93.147

98.41
98.929

98.5
99.15 98.92 98.92 98.9 98.92 98.89 98.95

90
91
92
93
94
95
96
97
98
99

100

Bailey –
Basili

Estimate

Alaa F.
Sheta

G.E.model I
Estimate

Alaa F.
Sheta

Model II
Estimate

Harish
model1

Harish
model2

CASE-I
MODEL -I

CASE-I
MODEL-II

CASE-I
MODEL-III

CASE-II
MODEL -I

CASE-II
MODEL-II

CASE-II
MODEL-III

VAF (%)

Fig 2 : Variance Accounted For %

Fig 3 : Mean Absolute Relative Error (MARE)

17.325

26.488

44.745

12.17
10.803

4.6397 4.6122 4.4373 4.6397
7.5

4.9

0

5

10

15

20

25

30

35

40

45

50

Bailey –
Basili

Estimate

Alaa F.
Sheta

G.E.model I
Estimate

Alaa F.
Sheta Model
II Estimate

Harish
model1

Harish
model2

CASE-I
MODEL -I

CASE-I
MODEL-II

CASE-I
MODEL-III

CASE-II
MODEL -I

CASE-II
MODEL-II

CASE-II
MODEL-III

Mean Absolute Relative Error (%)

1.21
6.079

23.804

80.859

2.25 0.271 0.255 0.282 0.271 0.253 0.257
0

10
20
30
40
50
60
70
80
90

Bailey –
Basili

Estimate

Alaa F.
Sheta

G.E.model
I Estimate

Alaa F.
Sheta

Model II
Estimate

Harish
model1

Harish
model2

CASE-I
MODEL -I

CASE-I
MODEL-II

CASE-I
MODEL-III

CASE-II
MODEL -I

CASE-II
MODEL-II

CASE-II
MODEL-III

Variance Absolute Relative Error (%)

Table 5 : Performance Measures
Fig 4 : Variance Absolute Relative Error %

VIII. CONCLUSION

Software cost estimation is based on a
probabilistic model and hence it does not generate
exact values. However if good historical data is provided
and a systematic technique is employed we can
generate better results. Accuracy of the model is
measured in terms of its error rate and it is desirable to
be as close to the actual values as possible. In this study
we have proposed new models to estimate the software
effort. In order to tune the parameters we use particle
swarm optimization methodology algorithm. It is
observed that PSO gives more accurate results when
juxtaposed with its other counterparts. On testing the
performance of the model in terms of the MARE, VARE
and VAF the results were found to be futile. These
techniques can be applied to other software effort
models.

REFERENCES REFERENCES REFERENCiaS

1. D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, 1989.

2. K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley and Sons, 2002.

3. C.A. Coello Coello et al. Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer, 2002.

4. Robert T. F. Ah King and Harry C. S. Rughooputh,
“Elitist Multi evolutionary algorithm for
environmental/economic dispatch”, IEEE 2003.

5. Alaa F. Sheta , “Estimation of the COCOMO Model
Parameters Using Genetic Algorithms for NASA
Software Projects”, Journal of Computer Science 2
(2): 118-123, ISSN 1549-36362006.

6. Alaa Sheta, David Rine and Aladdin Ayesh,”
Development of Software Effort and Schedule
Estimation Models Using Soft Computing

© 2011 Global Journals Inc. (US).

Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

7.

Tad Gonsalves, Atsushi Ito, Ryo Kawabata and
Kiyoshi Itoh , Swarm Intelligence in the Optimization
of Software Development Project

Schedule,

0730-
3157/08 , 2008 IEEE.

8.

J.S.Pahariya ,V. Ravi, M. Carr, Software Cost
Estimation using Computational Intelligence
Techniques,2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC 2009).

9.

Parvinder S. Sandhu, Porush Bassi, and Amanpreet
Singh Brar ,Software Effort Estimation Using Soft
Computing Techniques, World Academy of Science,
Engineering and Technology 46 2008.

10.

Iman Attarzadeh and Siew Hock Ow, Soft
Computing Approach for Software Cost Estimation,

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
II
I
V
er
si
on

 I

20

20
11

O
ct
ob

er

Techniques”, 2008 IEEE Congress on Evolutionary
Computation (CEC 2008), 978-1-4244-1823-7/08

International Journal of Software Engineering, IJSE
Vol.3 No.1 January 2010.

11. Xishi Huang, Danny Ho, Jing Ren , Luiz F. Capretz,,
Improving the COCOMO model using a neuro-fuzzy
approach, doi:10.1016/j.asoc.2005.06.007 ,2005
Elsevier.

12. Alaa Sheta, David Rine and Aladdin Ayesh,
Development of Software Effort and Schedule
Estimation Models Using Soft Computing
Techniques, 978-1-4244-1823-7/08,2008 IEEE.

13. John w. Bailey and victor R.Basili,(1981) ”A meta
model for software development resource
expenditures”, Fifth International conference on
software Engineering, CH-1627-9/81/0000/ 0107500.
75@ 1981 IEEE, PP 107-129,1981.

Ta
bl

e
4

: M
ea

s u
re

d
Ef

fo
rts

 o
f V

ar
io

us
 M

od
el

s

M
ea

su
re

d
ef

fo
rt

B
ai

le
y–

B
as

ili

E
st

im
at

e

A
la

a
F.

 h
et

aG
.

E
.M

od
el

E

st
im

at
e

A
la

a
F.

 S
he

ta

M
od

el
 2

E

st
im

at
e

H
ar

is
h

m
od

el
1

H
ar

is
h

m
od

el
2

C
A

S
E

-I
M

O
D

EL
-I

C
A

S
E

-I
M

O
D

EL
-II

C
A

S
E

-I
M

O
D

EL
-II

I
C

A
S

E
-II

M

O
D

EL
-I

C
A

S
E

-II

M
O

D
EL

-II
C

A
S

E
-II

M

O
D

EL
-II

I

5
7.

22
6

8.
44

11
.2

71
6.

35
7

4.
25

7
5.

00
00

02
4.

99
88

87
5.

00
00

07
5.

00
00

02
5.

50
27

22
5.

00
00

01

7
8.

21
2

11
. 2

2
14

.4
57

8.
66

4
7.

66
4

6.
98

27
86

7.
04

79
25

7.
07

54
3

6.
98

27
86

7.
07

14
39

6.
97

59
12

9
9.

35
7

14
.0

1
19

.9
76

11
.0

3
13

.8
8

9.
06

01
86

9.
22

28
74

8.
99

92
59

9.
06

01
86

8.
47

35
9

9.
15

46
42

23
.9

19
.1

6
31

.0
98

31
.6

86
26

.2
52

24
.7

02
23

.0
86

29
23

.4
04

47
24

.0
55

49
23

.0
86

29
21

.6
51

01
22

.8
21

18

79
68

. 2
43

81
.2

57
85

.0
07

74
.6

02
77

.4
52

71
.2

29
3

71
.7

53
96

71
.8

46
14

71
.2

29
3

68
.2

41
38

71
.0

39
09

90
.8

80
.9

29
91

.2
57

94
.9

77
84

.6
38

86
.9

38
81

.6
17

92
82

.1
05

57
82

.0
43

68
81

.6
17

92
78

.8
29

41
81

.4
49

35

98
.4

10
2.

17
5

10
6.

70
7

10
7.

25
4

10
0.

32
9

97
.6

79
98

.0
53

68
98

.3
99

88
98

.3
99

98
98

.0
53

68
96

.1
89

65
97

.7
95

41

98
.7

12
0.

84
8

11
9.

27
11

8.
03

11
3.

23
7

10
7.

28
8

11
1.

72
96

11
1.

94
49

11
1.

85
26

11
1.

72
96

11
0.

70
37

11
1.

45
18

11
5.

8
14

0.
82

13
1.

89
8

13
4.

01
1

12
6.

33
4

12
3.

13
4

12
5.

73
02

12
5.

87
21

12
5.

04
8

12
5.

73
02

12
5.

05
72

12
5.

68
34

13
8.

3
15

9.
43

4
14

3.
06

04
14

4.
44

8
13

8.
00

1
13

2.
60

1
13

8.
30

02
13

8.
30

03
13

7.
22

31
13

8.
30

02
13

8.
52

3
13

8.
29

99

Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

	Software Effort Estimation Using Particle Swarm Optimizationwith Inertia Weight
	Authors
	Index Terms
	I. INTRODUCTION
	a) Basic Effort Model
	b) Standard P SO with Inertia Weights

	II. THE STANDARD PSOWITH INERTIAWEIGHT FOR SOFTWARE EFFORTESTIMATION
	III. MODEL DESCRIPTION
	a) METHODOLOGY (ALOGORITHM)
	b) PROPOSED MODELS

	IV. MODEL ANALYSIS
	a) ImplementationWe have implemented

	V. MODEL EXPERIMENTATION
	VI. RESULTS AND DISCUSSIONS
	VII. PERFORMANCE ANALYSIS
	VIII. CONCLUSION
	REFERENCES REFERENCES REFERENCiaS

