
© 2011 . K. Amarendra, A. Vasudeva Rao. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial
use, distribution, and reproduction inany medium, provided the original work is properly cited.

 Global Journal of Computer Science and Technology
Volume 11 Issue 21 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Safety Critical Systems Analysis

By K. Amarendra, A. Vasudeva Rao

Dadi Institute of Engineering & Technology

Visakhapatnam Dt, India

Abstract

-

A brief overview of the fields that must be considered when designing, implementing

safety-critical systems is presented. The notion of safety is most likely to come to mind when we
drive a car, fly on an airliner, or take an elevator ride. In each case, we are concerned with the
threat of a mishap,

which defined as an unplanned event or series of events that result in death,

injury, occupational illness, damage to or loss of equipment or property or damage to the
environment.

Keywords :

Safety, Design, Implementation, Applications.

Safety Critical Systems Analysis

Strictly as per the compliance and regulations of:

GJCST Classification : K.6.5

Safety Critical Systems Analysis
K. Amarendra α, A. Vasudeva RaoΩ

 I. INTRODUCTION

safety critical system is a system where human
safety is dependent upon the correct operation of
system. Safety is considered not only for software

elements but also for hardware, electrical hardware,
operators or users etc. If the failure of a system could
lead to consequences that are determined to be
unacceptable then the system is safety critical.

Safety-critical systems, a term whose customary

meaning is systems whose failure might danger human
life, lead to substantial economic loss, or cause
extensive environmental damage. Many modern
systems depend on computers for their correct
operation. The future is likely to increase dramatically the
number of computer systems that we consider to be
safety-critical. The dropping cost of hardware, the
improvement in hardware quality, and other
technological developments ensure that new
applications will be sought in many domains.

 Traditional Systems

Traditional areas that have been considered the

home of safety-critical systems include medical care,
commercial aircraft, nuclear power, and weapons.
Failure in these areas can quickly lead to human life
being put in danger, loss of equipment, and so on.
Computerized equipment is making inroads in
procedures such as hip replacement, spinal surgery,
and ophthalmic surgery. In all three of these cases,
computer controlled robotic devices are replacing the
surgeons traditional tools, and providing substantial
benefits to patients.

Author α

:

Associate Professor & Head, Department of Computer
Science & Engineering,Dadi Institute of Engineering & Technology,
Anakapalle –

531002, Visakhapatnam Dt, India.

E-mail : hodcse@dietakp.com

Author Ω

:

Associate Professor, Department of Computer Science &
Engineering,Dadi Institute of Engineering &

Technology, Anakapalle –

531002, Visakhapatnam Dt, India .

E-mail : vasudevarao@dietakp.com

Non Traditional Systems

The scope of the safety-critical system concept
is broad, and that breadth has to be taken into account

when practitioners and researchers deal with specific
systems. Some of the examples of Non Traditional
systems are transportation control, banking and
financial systems, electricity generation and distribution,
telecommunications, and the management of water
systems. All of these applications are extensively
computerized, and computer failure can and does lead
to extensive loss of service with consequent disruption
of normal activities.

Separating safety-critical and safety-related
systems from systems where safety integrity is unable to
be established or maintained is an important aspect of
system safety design. When implementing a system
safety program it is important to suspect all
components as being unsafe unless assured
otherwise and then target the few areas where
safety requirements are allocated. Coupling between
components of complex systems can be subtle and
interaction with non-safety related systems have led
to harmful outcomes in safety related systems.

Traditional areas that have been considered the
home of safety-critical systems include medical care,
commercial aircraft, nuclear

power, and weapons.
Failure in these areas can quickly lead to

human life
being put in danger, loss of equipment and so on.
Computers are used in medicine far more widely than
most people realize. The idea of using a microprocessor
to control an insulin pump is quite well known. The fact
that a pacemaker is largely

a computer is less well
known. The extensive use of computers in

surgical
procedures is almost unknown except by specialists.
Computerized equipment is making inroads in
procedures such as hip

replacement, spinal surgery,
and ophthalmic surgery. In all three of

these cases,
computer controlled robotic devices are replacing the

surgeons traditional tools, and providing substantial
benefits to

patients.

The scope of the safety-critical system concept
is broad, and that breadth has to be taken into account
when practitioners and researchers deal with specific
systems. A closer examination of the topic reveals that
many new types of system have the potential for very
high consequences of failure, and these systems should
probably be considered safety-critical also. It is obvious

A

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

37

20
11

D
ec

em
be

r

Abstract- A brief overview of the fields that must be considered
when designing, implementing safety-critical systems is
presented. The notion of safety is most likely to come to mind
when we drive a car, fly on an airliner, or take an elevator ride.
In each case, we are concerned with the threat of a mishap,
which defined as an unplanned event or series of events that
result in death, injury, occupational illness, damage to or loss
of equipment or property or damage to the environment.
Keywords: Safety, Design, Implementation, Applications,

Traditional Areas

Non Traditional Areas

that the loss of a commercial aircraft will probably kill
people. It is not obvious that loss of a telephone system
could kill people.

Emergency service is an example of a critical
infrastructure application. Other examples are
transportation control, banking and financial systems,

electricity generation and distribution, telecommunica

-

tions, and the management of water systems. All of
these applications are extensively computerized, and
computer failure can and does lead to extensive loss of
service with consequent disruption of normal activities.
In some cases, the disruption can be very serious.
Widespread loss of water or electricity supply has
obvious implications for health and safety. Similarly,
widespread loss of transportation services, such as rail
and trucking, would affect food and energy distribution.
It is prudent to put the computer systems upon which
critical infrastructures depend into the safety-critical
category.

II. SAFETY BOUNDARIES

Functional Safety Boundaries

a)

The need for having boundaries

Taking the extreme position, very few
systems are fully independent in their operation and
to be completely assured of the absence of
interaction or common cause failure between the
safety-related and other systems would take an

inordinate amount of time and effort. This could cause
the opposite effect to delay introducing the safety
benefits of the deployment of a safety-related
system. At some point a determination must be made
that all possible influences are controlled or risks
sufficiently known so the safety analysis can be
bounded.

b)

Objectives of functional safety boundaries

Minimise the interfaces across the safety
boundary to direct focus on the safety separation
implemented in these;

Minimise likelihood of common-cause failures
across the boundary;

Exclude non safety related functions where
these are volatile or subject to undefined or non-safety
related controls;

Allow a Safety Integrity Level (SIL) to be
achieved within the boundary.

c)

Identifying safety functions

A useful method to establish the functional
safety boundary between systems or subsystems is to
undertake a Fault Tree Analysis (FTA) of the contributing
factors to failure of the system, which may lead to

hazardous events identified in the preliminary hazard
analysis. The first attempt at a boundary would be
around the systems that are implicated in the FTA. This
FTA needs to be extensive and complete from all
initiating situations to the system failure that is a
casual factor for the hazardous event. Then flowing
down the tree, mark off those functions that are
related to systems that should be excluded due to:

•

The possibility of common-cause failure;

•

High levels of complexity and non-deterministic

Failure rate; or

•

Components that may not always be present or

enabled.

d)

The problem with software

At a system level, this process looks
reasonably straightforward but the problem comes
with setting boundaries

with distributed software
architectures. In this situation it is very difficult to
identify boundaries that don’t involve the possibility
of common-cause failures.

Common-cause failures and dependencies
extending over the distributed communication
networks must also be considered and the
functional safety boundary set accordingly. These may
include:

•

Global variables accessed by network

•

Security attack and security blocking issues

•

Affects of network lock-up on functional safety

The separation requirements over the functional
safety boundary must take these failures into account.

III. DISCIPLINES

The criterion used is that these disciplines are at
the heart of the safety-critical electronic and information
technology components of modern vehicles. Safety-
critical systems have many requirements that stem from
several engineering disciplines. The main disciplines
having a direct bearing on designing safety critical
systems are: domain engineering, embedded systems
engineering, protocol and network engineering, safety
engineering, reliability engineering, real-time systems
engineering, and systems engineering.Currently, several
design and implementation options are available to a
researcher, developer, or designer. In terms of
protocols, one can choose among CAN, TTCAN,
Switched Ethernet, TTP/C, Flex Ray and others.
Because of cost, flexibility, the intended application
theoretical, advances implementation technology, and
other issues, it is not straightforward to decide what
protocol or network technology is the best.

a.

Domain Engineering

:

Safety-critical systems exist in
a certain application context. Certainly the details of
safety-critical aerospace systems are different from
those of the space shuttle, process control, or
automotive. It is important that it can be used to
tune or optimize certain mechanisms (e.g.,
communications, fault tolerance, fail status, etc)

Safety Critical Systems Analysis

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

38

20
11

D
ec

em
be

r

b. Embedded System Engineering : Safety-critical
systems are embedded systems such as micro-
controllers; real-time operating systems, memory
configurations, and I/O are relevant.

c. Protocol and Network Engineering : Protocols and
networking are at the heart of distributed safety-

the protocol is in order to experiment with and
provide higher layer protocols (HLP). Still another
issue is the application of inter-networking (using
bridges, switches, and routers) at the vehicle level.

d.

Safety Engineering

:

system (availability)

reliability
deals with the problem of ensuring that a system
performs a required task or mission (at) for a
specified time.

System safety

is concerned with
ensuring that a mishap

does not occur in the
process. Usually, there are some failures exits like
benign failures and catastrophic failures.

e.

Reliability Engineering

:

It deals with the available
operation of a system even under the failure of
system components. The primary mechanism is the
use of redundant components to design fault
tolerant systems. There are two schemes to handle
the replacement of failed components.

They are

static and dynamic redundancy.

f.

Real time Engineering

:

Techniques for ensuring
that a system meet timeliness requirements are
important for safety-critical applications. A
distinction is made between

hard real-time and soft
real-time systems. Safety-critical systems certainly
belong to the category of hard real-time systems. To
see if a system meets real-time requirements,
schedulability analysis is used and this
methodology is well known for single-processor or
multiprocessor operating systems.

g.

Systems Engineering

:

System engineering
emphasizes formal processes that start with a
system’s requirements and specification, and
includes an iterative design, test, and verification
cycle.

IV. APPLICATIONS

Safety critical systems are whose failure results
in loss of life, property damage or damage to the
environment. There are many well known examples in
application areas such as medical devices, aircraft flight
control weapons and nuclear systems.

Example of a safety critical system is an aircraft
fly by wire control system, where the pilot inputs
commands to the control computer using a joystick, and
the computer manipulates the actual aircraft controls.
The lives of hundreds of passengers are totally
dependent upon the continued correct operation of
such a system.

Moving down to earth, railway signalling
systems must enable controllers to direct trains, while
preventing trains from colliding. Like an aircraft fly by
wire, lives are dependent upon the correct operation of
the system. However, there is always the option of
stopping all trains if the integrity of the system becomes
suspect. You can't just stop an aircraft while the fly by
wire system is fixed!

Software in medical systems may be directly
responsible for human life, such as metering safe

amounts of X-rays. Software may also be involved in
providing humans with information, such as information
which a doctor uses to decide on medication. Both
types of system can impact the safety of the patient.

Big civil engineering structures are designed on
computers and tested using mathematical models. An
error in the software could conceivably result in a bridge
collapsing. Aircraft, trains, ships and cars are also
designed and modelled using computers.

Even something a simple as traffic lights can be
viewed as safety critical. An error giving green lights to
both directions at a cross road could result in a car

accident. Within cars, software involved in functions
such as engine management, anti-lock brakes, traction
control, and a host of other functions, could potentially
fail in a way which increases the likelihood of a road
accident.

V. CHALLENGES

In one way or another, many people in the software
business are working on safety-critical systems
technology. Many more systems than one might expect
have to be viewed as safety-critical and the number is
increasing all the time. So what are the major challenges
that we face?

In some cases, what amount to completely new
technologies is required? The number of interacting
safety-critical systems present in a single application will
force the sharing of resources between systems. This
will eliminate a major architectural element that gives
confidence in correct operation—physical separation.
Knowing that the failure of one system cannot affect
another greatly facilitates current analysis techniques.
This will be lost as multiple functions are hosted on a
single platform to simplify construction and to reduce
power and weight requirements. Techniques that
provide high levels of assurance of non-interference will
be required.

Breakdowns in the interplay between software
engineering and systems engineering remains a
significant cause of failures. It is essential that
comprehensive approaches to total system modelling
be developed so that properties of entire systems can
be analysed. Such approaches must accommodate
software properly and provide high fidelity models of
critical software characteristics. They must also deal with
the issue of assured non-interference.

Safety Critical Systems Analysis

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

39

20
11

D
ec

em
be

r

critical systems. The degree of flexibility offered by

Defective software specifications are implicated
in many serious failures, and it is clear that we have
difficulty stating exactly what software is required to do.
There are many aspects of specification that are not
supported by any current technique, and, even where
specification techniques do exist, there remains a lack
of integration to permit whole specification analysis.

VI. DESIGNING

The design of any safety critical system must be
as simple as possible taking no unnecessary risks.

Software point of view, this usually involves minimizing
the use of interrupts and minimizing the use of
concurrency within the software.

Ideally, a safety critical system requiring a high
integrity level would have no interrupts and only one
task. However, this is not achievable in practice.

There are two distinct philosophies for the
specification and design of safety critical systems.

•

To specify and design a "perfect" system, which
cannot go wrong because there are no faults in it,
and to prove that there are no faults in it.

•

To aim for the first philosophy is to accept that
mistakes may have been made, and to include error
detection and recovery capabilities to prevent errors
from actually causing a hazard to safety.

The first of these approaches can work well for
small systems, which are sufficiently compact for formal
mathematical methods to be used in the specification
and design, and for formal mathematical proof of design
correctness to be established.

The second philosophy, of accepting that no
matter how careful we are

in developing a system, that it
could still contain errors, is the approach more generally
adopted. This philosophy can be applied at a number of
levels:

•

Within a routine, to check that inputs are valid, to
trap errors within the routine, and to ensure that
outputs are safe;

•

Within the software, to check that system inputs are
valid, to trap errors within the Software, and to
ensure that system outputs are safe;

•

Within the system, as independent verification that
the rest of the system is behaving correctly, and to
prevent it from causing the system to become
unsafe;

The safety enforcing part is usually referred to
as an interlock or protection subsystem. Designing
safety-critical systems is a complex endeavour
particularly if extensive use of advanced electronics and
information technology is used. The increased use of
microcontrollers in modern automotive systems has
brought many benefits such as the merging of chassis
control systems for active safety with passive-safety
systems. Unfortunately, it has also brought the potential
for catastrophic failures. Thus, the widespread
application of microcontrollers requires extreme care in
order to produce a dependable system. Dependability
involves reliability, safety, availability, and security but in
this paper we are only concerned with safety, reliability,
and availability.

The area of system safety is well-established
and procedures exist to identify and analyse
electromechanical hazards along with techniques to
eliminate or limit hazards in a final product.

Unfortunately, much more is known about how to

engineer safe mechanical systems than safe computing
systems, particularly when software is a major
component of the engineered system. With the
increased used of software in safety-critical components
of complex systems, governments agencies and other
institutions are increasingly including requirements for
software hazard analysis and verification of software
safety.

Security

:

It has become clear that security
attacks against information systems are a large

and
growing problem. Attacks against both public and
private networks can have devastating effects. The
Internet is being used increasingly to provide
communication service to business, and security attacks
against the Internet are a troubling problem for

network
users.

Although Internet attacks are important, private
networks are a bigger concern. Money is moved locally
and around the World on private networks owned by
financial institutions. Transportation systems are
monitored and controlled using mostly private networks.
A successful attack against certain private networks
could permit funds or valuable information such as
credit card numbers to be stolen, transportation to be
disrupted, and so on. The potential for loss is
considerable, and, although no physical damage would
be involved in security failures, the consequences of
failure are such that many systems that only carry
information should be regarded as safety-critical.

VII. IMPLEMENTATION

Some programming language features prone to
problems than others. This is because of number of
reasons. Those are

1)

Programmers do errors while using the feature.

2)

Poor compilation or poor implementation.

3)

Programs written may be difficult to analyze and
test.

Few programming language features that cause
problems:

Usage of pointers

: It is very difficult to use the
pointers in programming language .In order to use
pointers; the developers’ need great understanding

Safety Critical Systems Analysis

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

40

20
11

D
ec

em
be

r

of memory address and management. Programs
which use pointers can be difficult to understand or
analyze.

2) Memory Management : The memory allocation and
de-allocation is related to pointers. every
programmer allocate memory but sometimes they
forget to de-allocate .Compilers and operating
systems frequently fail to fully recover de-allocated
memory. The result is errors which are dependent
on execution time, with a system mysteriously failing
after a period of continuous operation.

3) Multiple Entry and Exits : More number of exit and

1)

entry points to loops, blocks, procedures and
functions, is really just a variation of unstructured
programming. However, controlled use of more than
one exit can simplify code and reduces the risk.

4)

Type of Data

: where the type of data in a variable
changes, or the structure of a record changes, is
difficult to analyze, and can easily confuse a
programmer leading to programming errors.

Declaration & Initialization

: A simple spelling
mistake can result in software which compiles,

but
does not execute correctly. In the worst case
individual units may appear to execute correctly,
with the error only being detectable at a system
level. Declaration must be perfect.

Parameter Passing

:

passing one procedure or
function as a parameter to another procedure or
function, is difficult to analyze and test thoroughly.

7)

Recursion

: Recursion is calling a function itself. It is
difficult to analyze and test thoroughly. Recursion
can also lead to unpredictable real time behavior.

8)

Concurrency and Interrupts

: These features are
supported directly by some programming
languages only. Use of concurrency and interrupts
is some what produce ambiguity.

The use of such programming language
features in safety critical software is discouraged.

Most modern programming languages
encourage the use of block structure and modular
programming, such that programmers take good
structure for granted. Well structured software is easier
to analyze and test, and consequently less likely to
contain errors.

The features of few programming languages
which can be used to increase reliability are:

1)

Perfect data usage

:

The data is only used and
assigned where it is of a compatible type.

2)

Constraint checking

:

Ensure that arrays bounds are
not violated, that data does not overflow, that zero
division does not occur.

3)

Parameter checking

: To ensure that parameters
passed to or from procedures and functions are of
the correct type, are passed in the right direction (in
or out) and contain valid data.

There are no commonly available programming
languages which provide all of the good language
features. The solution is to use a language subset,
where a language with as many good features as
possible is chosen, and the bad features are simply not
used. Use of a subset requires discipline on behalf of
the programmers and ideally a subset checking tool to
catch the occasional mistake. An advantage of a subset
approach is that the bounds of the subset can be
flexible, to allow the use of some features in a limited
and controlled way.

Ada is the preferred language for the
implementation of safety critical software because it can
be used effectively within the above constraints. The

most popular Ada subset for safety critical software is
the SPARKAda subset.

SPARKAda is a subset of the Ada Programming
Language that restricts several features of Ada such as
unrestricted tasking. SPARKAda includes a built-in
toolset called the ”Examimator” which tests the entire
source code for conditional and unconditional data flow
errors which in theory would deem the source code
exception free. The disadvantage to SPARKAda is that is
closed and proprietary which increases the cost of
implementation. Since it is a closed format, outside
community support is restricted and there is a higher
risk of implementation with only one vendor to rely on for
technical support and language updates.

VIII. TESTING & VERIFICATION

Safety critical testing

: Testing of safety-critical
systems follows two important strategies which are
systematic rigorous testing and static analysis. While
there is no substitute for rigorous testing at many levels:
Unit, regression, functionality and integration testing,
testing effectiveness depends on the

quality of the
test cases used. The best test suites are those that
have good code coverage. Statement coverage and
condition Coverage are the most commonly used
metrics. Full Condition coverage is considered essential
for safety-critical code, such

as flight control software.
Achieving full coverage can be exceedingly time-
consuming and expensive.

Safety critical software functions provide the
source of requirements to be tested. Testing shall be
performed to verify correct incorporation of software
safety requirements. Testing must show that hazards
have been eliminated or controlled to an acceptable
level of risk. Additional hazardous states identified
during testing shall undergo complete analysis prior
to software delivery or use. Software safety testing

integration and acceptance tests. Acceptance testing
shall verify correct operation of the SCCSCs in
conjunction with system hardware and operators[36].

Safety Critical Systems Analysis

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

41

20
11

D
ec

em
be

r

5)

6)

It shall verify correct operation during stress conditions
and in the presence of system faults. It is important
to tailor the safety-critical testing effort to emphasize
the parts of the software that need additional analysis
and testing. The greatest effort must be placed on
the hazards posing the highest risk. We consider it
adequate to divide the software into two risk groups for
test purposes.

Verification is the most important and most
expensive group of activities in the development of
safety critical systems, with verification activities being
associated with each stage of the development lifecycle.
An added complication is that independent verification
is usually required. The means by which this is achieved
depends upon the integrity level. Independent

of Safety-Critical Computer Software Components
(SCCSC) shall be included in the integration and

verification can vary from independent witnessing of
tests, participation at reviews and audit of the
developer's verification, to fully independent execution of
all verification activities. Independent verification is an
addition to verification conducted by developers, not a
substitute for it.

According to ISO 9001 activity, reviews will be
conducted as a part of verification. Reviews become
more formal, including techniques

such as detailed
walkthroughs of even the lowest level of design. The
scope of reviews is extended to include safety criteria.

IX. CONCLUSION

The choice of a language can have a significant
impact on the success or failure of a safety-critical
system. The language can impact the ease of validation,
the number of defects, and many important parts of the
development process. Few languages are inherently
“safe” as well as having good tool support, good
documentation and wide usage.

A general-purpose language, which is made
“safe” by use of a subset and good tool support, is the
best choice for a safety-critical system. Modelling
languages show excellent promise as implementation
languages for all types of software development, not just
safety critical.

Safety critical software is a complex subject.
This paper will give an analysis of safety critical system
means about design, implementation, verification,
Applications etc.

Although safety critical systems have been in
use for many years, the development of safety critical
software is still a relatively new and immature subject.
New techniques and methodologies for safety critical
software are a popular research topic with universities,
and are now becoming available to industry.

Tools supporting the development of safety critical
software are now available, making the implementation
of safety critical standards a practical prospect.

REFERENCES

REFERENCES

REFERENCIAS

1.

Robyn R. Lutz, “Software Engineering for Safety: a
Roadmap”, Proceedings of the Conference

on The
Future of Software Engineering, June 04-11, 2000,
Limerick, Ireland, pp. 213-226.

2.

Alan C. Tribble et al. “Software Safety Analysis of a
Flight Guidance System”, Proceedings of the 21st
Digital Avionics Systems Conference

(DASC'02),
Irvine, California, Oct. 27-31, 2002.

3.

Debra S. Herman, “Software Safety and Reliability
Basics”, (ch.2), Software Safety and Reliability:
Techniques, Approaches, and Standards of Key
Industrial Sectors Wiley-IEEE Computer Society
Press, 2000.

4.

Dale M. Gray. Frontier Status Report

#203, 19 May
2000, www.asi.org

5.

John C. Knight. “Safety Critical Systems: Challenges
and Directions” Proceedings of the 24th
International Conference on Software Engineering

(ICSE), Orlando, Florida, 2002.

6.

N.Leveson, Safeware: System Safety and
Computers, Addison Wesley, 1995.

7.

L.Pullum, Software Fault Tolerance: Techniques and
Implementation, Artech House, 2001.

8.

W.R. Dunn, Practical Design of Safety-Critical
Computer Systems, Reliability Press, 2002.

9.

Kopetz, H.,Real-Time Systems, Design Principles for

Distributed Embedded Applications, Kluwer
Academic Publishers, 1997.

10.

Conmy, P., Nicholson, M., Purwantoro, Y.,M., and
McDermid, J. (2002) Safety Analysis and
Certification of

Open Distributed Systems.

11.

J. A. McDermid, The cost of COTS, IEE Colloquium
-

COTS and Safety critical systems

London,1998.

12.

IEC 61508 Functional Safety of electrical / electronic
/ programmable electronic safety-related systems

Geneva: International Electrotechnical Commission,
1998.

13.

Tindell, K., “Analysis of Hard Real-Time
communications”, Real-Time Systems,vol 9,pp,147-
171,1995.

14.

Jesty, P.H., Hobley, K.M., Evans, R., and Kendall,
I.,“Safety Analysis of Vehicle-Based Systems,”
Proceedings of the 8th

Safety-critical Systems
Symposium, 2000.

15.

Raghu Singh. “A Systematic Approach to Software
Safety”. Proceedings of Sixth Asia Pacific Software
Engineering Conference

(APSEC), Takamatsu,
Japan, 1999.

16.

N. G. Leveson “Software Safety: Why, what, and
how”. ACM

Computing Surveys, 18(2):125-163,
June 1986.

17.

The University of York, Safety critical systems
engineering, system safety engineering,

Modular
MSc, diploma, certificate, short courses1999.

Safety Critical Systems Analysis

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

42

20
11

D
ec

em
be

r

18. The University of York, Heslington, U.K.;
www.cs.york.ac.uk/MSc/SCSE.

19. The Hazards Forum, Safety-related systems:
Guidance for engineers, The Hazards Forum (1995).
London,U.K.;www.iee.org.uk/PAB/SCS/hazpub.htm.

	Safety Critical Systems Analysis
	Authors
	Keywords
	I. INTRODUCTION
	II. SAFETY BOUNDARIES
	a) The need for having boundaries
	b) Objectives of functional safety boundaries
	c) Identifying safety functions
	d) The problem with software

	III. DISCIPLINES
	IV. APPLICATIONS
	V. CHALLENGES
	VI. DESIGNING
	VII. IMPLEMENTATION
	VIII. TESTING & VERIFICATION
	IX. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

