
© 2011 .  K. Amarendra, A. Vasudeva Rao. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial 
use, distribution, and reproduction inany medium, provided the original work is properly cited. 

 Global Journal of Computer Science and Technology 
Volume 11 Issue 21 Version 1.0 December 2011 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Safety Critical Systems Analysis
  

By K. Amarendra, A. Vasudeva Rao

 

Dadi Institute of Engineering & Technology

 

Visakhapatnam Dt, India

    
 

Abstract
 
-
 
A brief overview of the fields that must be considered when designing, implementing 

safety-critical systems is presented. The notion of safety is most likely to come to mind when we 
drive a car, fly on an airliner, or take an elevator ride. In each case, we are concerned with the 
threat of a mishap,

 
which defined as an unplanned event or series of events that result in death, 

injury, occupational illness, damage to or loss of equipment or property or damage to the 
environment.
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 I.      INTRODUCTION

 

 

safety critical system is a system where human 
safety is dependent upon the correct operation of 
system. Safety is considered not only for software 

elements but also for hardware, electrical hardware, 
operators or users etc. If the failure of a system could 
lead to consequences that are determined to be 
unacceptable then the system is safety critical.

 
Safety-critical systems, a term whose customary 

meaning is systems whose failure might danger human 
life, lead to substantial economic loss, or cause 
extensive environmental damage. Many modern 
systems depend on computers for their correct 
operation. The future is likely to increase dramatically the 
number of computer systems that we consider to be 
safety-critical. The dropping cost of hardware, the 
improvement in hardware quality, and other 
technological developments ensure that new 
applications will be sought in many domains.

 Traditional Systems

 
Traditional areas that have been considered the 

home of safety-critical systems include medical care, 
commercial aircraft, nuclear power, and weapons. 
Failure in these areas can quickly lead to human life 
being put in danger, loss of equipment, and so on. 
Computerized equipment is making inroads in 
procedures such as hip replacement, spinal surgery, 
and ophthalmic surgery. In all three of these cases, 
computer controlled robotic devices are replacing the 
surgeons traditional tools, and providing substantial 
benefits to patients.
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Non Traditional Systems

 

The scope of the safety-critical system concept 
is broad, and that breadth has to be taken into account 

when practitioners and researchers deal with specific 
systems. Some of the examples of Non Traditional 
systems are transportation control, banking and 
financial systems, electricity generation and distribution, 
telecommunications, and the management of water 
systems. All of these applications are extensively 
computerized, and computer failure can and does lead 
to extensive loss of service with consequent disruption 
of normal activities.

 

Separating safety-critical and safety-related 
systems from systems where safety integrity is unable to 
be established or maintained is an important aspect of 
system safety design. When implementing a system 
safety program it is important  to  suspect  all  
components  as  being  unsafe unless  assured  
otherwise  and  then  target  the  few  areas where  
safety  requirements  are  allocated.  Coupling  between  
components  of  complex  systems  can  be  subtle and  
interaction  with  non-safety  related  systems  have  led 
to  harmful outcomes in safety related systems. 

 

 

Traditional areas that have been considered the 
home of safety-critical systems include medical care, 
commercial aircraft, nuclear

 

power, and weapons. 
Failure in these areas can quickly lead to

 

human life 
being put in danger, loss of equipment and so on. 
Computers are used in medicine far more widely than 
most people realize. The idea of using a microprocessor 
to control an insulin pump is quite well known. The fact 
that a pacemaker is largely

 

a computer is less well 
known. The extensive use of computers in

 

surgical 
procedures is almost unknown except by specialists. 
Computerized equipment is making inroads in 
procedures such as hip

 

replacement, spinal surgery, 
and ophthalmic surgery. In all three of

 

these cases, 
computer controlled robotic devices are replacing the

 

surgeons traditional tools, and providing substantial 
benefits to

 

patients.

 

 

The scope of the safety-critical system concept 
is broad, and that breadth has to be taken into account 
when practitioners and researchers deal with specific 
systems. A closer examination of the topic reveals that 
many new types of system have the potential for very 
high consequences of failure, and these systems should 
probably be considered safety-critical also. It is obvious 
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Abstract- A brief overview of the fields that must be considered 
when designing, implementing safety-critical systems is
presented. The notion of safety is most likely to come to mind 
when we drive a car, fly on an airliner, or take an elevator ride. 
In each case, we are concerned with the threat of a mishap, 
which defined as an unplanned event or series of events that 
result in   death, injury, occupational illness, damage to or loss 
of equipment or property or damage to the environment.
Keywords: Safety, Design, Implementation, Applications,

Traditional Areas

Non Traditional Areas

that the loss of a commercial aircraft will probably kill 
people. It is not obvious that loss of a telephone system 
could kill people.



 

 

Emergency service is an example of a critical 
infrastructure application. Other examples are 
transportation control, banking and financial systems,

 

electricity generation and distribution, telecommunica

 

-

 

tions, and the management of water systems. All of 
these applications are extensively computerized, and 
computer failure can and does lead to extensive loss of 
service with consequent disruption of normal activities. 
In some cases, the disruption can be very serious. 
Widespread loss of water or electricity supply has 
obvious implications for health and safety. Similarly, 
widespread loss of transportation services, such as rail 
and trucking, would affect food and energy distribution. 
It is prudent to put the computer systems upon which 
critical infrastructures depend into the safety-critical 
category.

 

II.     SAFETY BOUNDARIES

 

Functional Safety Boundaries 

 

a)

 

The need for having boundaries 

 

Taking  the  extreme  position,  very  few  
systems  are  fully independent  in  their  operation  and  
to  be  completely assured  of  the  absence  of  
interaction  or  common cause failure  between  the  
safety-related  and  other  systems would take an

 

inordinate amount of time and effort.  This could  cause  
the  opposite  effect  to  delay  introducing  the safety  
benefits  of  the  deployment  of  a  safety-related 
system. At some point a determination must be made 
that all possible influences are controlled or risks 
sufficiently known so the safety analysis can be 
bounded. 

 

b)

 

Objectives of functional safety boundaries

 

Minimise the interfaces across the safety 
boundary to direct focus on the safety separation 
implemented in these; 

 

Minimise likelihood of common-cause failures 
across the boundary; 

 

Exclude non safety related functions where 
these are volatile or subject to undefined or non-safety 
related controls;

 

Allow a Safety Integrity Level (SIL) to be 
achieved within the boundary. 

 

c)

 

Identifying safety functions  

 

A  useful  method  to  establish  the  functional  
safety boundary between systems or subsystems is to 
undertake a Fault Tree Analysis (FTA) of the contributing 
factors to failure  of  the  system,  which  may  lead    to 

 

hazardous events  identified  in  the  preliminary  hazard  
analysis.  The first attempt at a boundary would be 
around the systems that are implicated in the FTA.  This  
FTA needs  to  be extensive and complete from all 
initiating situations to the system  failure  that  is  a  
casual  factor  for  the  hazardous event.  Then  flowing  
down  the  tree,  mark  off  those functions  that  are  
related  to  systems  that  should  be excluded due to: 

 

•

 

The possibility of common-cause failure; 

 

•

 

High levels of complexity and non-deterministic

 

Failure rate; or 

 

•

 

Components that may not always be present or

 

enabled. 

 

d)

 

The problem with software 

 

At  a  system  level,  this  process  looks  
reasonably straightforward  but  the  problem  comes  
with  setting boundaries

 

with distributed software 
architectures. In this situation  it  is  very  difficult  to  
identify  boundaries  that don’t  involve  the  possibility  
of  common-cause  failures.  

 

Common-cause failures and dependencies 
extending over the  distributed  communication  
networks  must  also  be considered  and  the  
functional  safety  boundary  set accordingly. These may 
include: 

 

•

 

Global variables accessed by network  

 

•

 

Security attack and security blocking issues 

 

•

 

Affects of network lock-up on functional safety 

 

The separation requirements over the functional 
safety boundary must take these failures into account. 

 

III.     DISCIPLINES

 

The criterion used is that these disciplines are at 
the heart of the safety-critical electronic and information 
technology components of modern vehicles. Safety-
critical systems have many requirements that stem from 
several engineering disciplines. The main disciplines 
having a direct bearing on designing safety critical 
systems are: domain engineering, embedded systems 
engineering, protocol and network engineering, safety 
engineering, reliability engineering, real-time systems 
engineering, and systems engineering.Currently, several 
design and implementation options are available to a 
researcher, developer, or designer. In terms of 
protocols, one can choose among CAN, TTCAN, 
Switched Ethernet, TTP/C, Flex Ray and others. 
Because of cost, flexibility, the intended application 
theoretical, advances implementation technology, and 
other issues, it is not straightforward to decide what 
protocol or network technology is the best.

 
 

a.

 

Domain Engineering

 

:

 

Safety-critical systems exist in 
a certain application context. Certainly the details of 
safety-critical aerospace systems are different from 
those of the space shuttle, process control, or 
automotive. It is important that it can be used to 
tune or optimize certain mechanisms (e.g., 
communications, fault tolerance, fail status, etc)
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b. Embedded System Engineering : Safety-critical 
systems are embedded systems such as micro-
controllers; real-time operating systems, memory 
configurations, and I/O are relevant.

c. Protocol and Network Engineering : Protocols and 
networking are at the heart of distributed safety-



 
  

 
   

 

the protocol is in order to experiment with and 
provide higher layer protocols (HLP). Still another 
issue is the application of inter-networking (using 
bridges, switches, and routers) at the vehicle level.

 

d.

 

Safety Engineering

 

:

 

system (availability)

 

reliability 
deals with the problem of ensuring that a system 
performs a required task or mission (at) for a 
specified time.

 

System safety

 

is concerned with 
ensuring that a mishap

 

does not occur in the 
process. Usually, there are some failures exits like 
benign failures and catastrophic failures.

 

e.

 

Reliability Engineering

 

:

 

It deals with the available 
operation of a system even under the failure of 
system components. The primary mechanism is the 
use of redundant components to design fault 
tolerant systems. There are two schemes to handle 
the replacement of failed components.

 

They are

 

static and dynamic redundancy.

 

f.

 

Real time Engineering

 

:

  

Techniques for ensuring 
that a system meet timeliness requirements are 
important for safety-critical applications. A 
distinction is made between

 

hard real-time and soft 
real-time systems. Safety-critical systems certainly 
belong to the category of hard real-time systems. To 
see if a system meets real-time requirements, 
schedulability analysis is used and this 
methodology is well known for single-processor or 
multiprocessor operating systems.

 

g.

 

Systems Engineering

 

:

 

System engineering 
emphasizes formal processes that start with a 
system’s requirements and specification, and 
includes an iterative design, test, and   verification 
cycle.

 

IV.     APPLICATIONS

 

Safety critical systems are whose failure results 
in loss of life, property damage or damage to the 
environment. There are many well known examples in 
application areas such as medical devices, aircraft flight 
control weapons and nuclear systems.

 

Example of a safety critical system is an aircraft 
fly by wire control system, where the pilot inputs 
commands to the control computer using a joystick, and 
the computer manipulates the actual aircraft controls. 
The lives of hundreds of passengers are totally 
dependent upon the continued correct operation of 
such a system.

 

Moving down to earth, railway signalling 
systems must enable controllers to direct trains, while 
preventing trains from colliding. Like an aircraft fly by 
wire, lives are dependent upon the correct operation of 
the system. However, there is always the option of 
stopping all trains if the integrity of the system becomes 
suspect. You can't just stop an aircraft while the fly by 
wire system is fixed! 

 

Software in medical systems may be directly 
responsible for human life, such as metering safe 

amounts of X-rays. Software may also be involved in 
providing humans with information, such as information 
which a doctor uses to decide on medication. Both 
types of system can impact the safety of the patient. 

 

Big civil engineering structures are designed on 
computers and tested using mathematical models. An 
error in the software could conceivably result in a bridge 
collapsing. Aircraft, trains, ships and cars are also 
designed and modelled using computers.

 

Even something a simple as traffic lights can be 
viewed as safety critical. An error giving green lights to 
both directions at a cross road could result in a car

 

accident. Within cars, software involved in functions 
such as engine management, anti-lock brakes, traction 
control, and a host of other functions, could potentially 
fail in a way which increases the likelihood of a road 
accident.

 

V.    CHALLENGES

 

In one way or another, many people in the software 
business are working on safety-critical systems 
technology. Many more systems than one might expect 
have to be viewed as safety-critical and the number is 
increasing all the time. So what are the major challenges 
that we face?

 

In some cases, what amount to completely new 
technologies is required? The number of interacting 
safety-critical systems present in a single application will 
force the sharing of resources between systems. This 
will eliminate a major architectural element that gives 
confidence in correct operation—physical separation. 
Knowing that the failure of one system cannot affect 
another greatly facilitates current analysis techniques. 
This will be lost as multiple functions are hosted on a 
single platform to simplify construction and to reduce 
power and weight requirements. Techniques that 
provide high levels of assurance of non-interference will 
be required.

 

Breakdowns in the interplay between software 
engineering and systems engineering remains a 
significant cause of failures. It is essential that 
comprehensive approaches to total system modelling 
be developed so that properties of entire systems can 
be analysed. Such approaches must accommodate 
software properly and provide high fidelity models of 
critical software characteristics. They must also deal with 
the issue of assured non-interference.
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critical systems. The degree of flexibility offered by 

Defective software specifications are implicated 
in many serious failures, and it is clear that we have 
difficulty stating exactly what software is required to do. 
There are many aspects of specification that are not 
supported by any current technique, and, even where 
specification techniques do exist, there remains a lack 
of integration to permit whole specification analysis.

VI.     DESIGNING

The design of any safety critical system must be 
as simple as possible taking no unnecessary risks. 



 

 

 

Software point of view, this usually involves minimizing 
the use of interrupts and minimizing the use of 
concurrency within the software.

 

Ideally, a safety critical system requiring a high 
integrity level would have no interrupts and only one 
task. However, this is not achievable in practice.

 

There are two distinct philosophies for the 
specification and design of safety critical systems. 

 

•

 

To specify and design a "perfect" system, which 
cannot go wrong because there are no faults in it, 
and to prove that there are no faults in it.

 

•

 

To aim for the first philosophy is to accept that 
mistakes may have been made, and to include error 
detection and recovery capabilities to prevent errors 
from actually causing a hazard to safety. 

 

The first of these approaches can work well for 
small systems, which are sufficiently compact for formal 
mathematical methods to be used in the specification 
and design, and for formal mathematical proof of design 
correctness to be established. 

 

The second philosophy, of accepting that no 
matter how careful we are

 

in developing a system, that it 
could still contain errors, is the approach more generally 
adopted. This philosophy can be applied at a number of 
levels: 

 

•

 

Within a routine, to check that inputs are valid, to 
trap errors within the routine, and to ensure that 
outputs are safe;

 

•

 

Within the software, to check that system inputs are 
valid, to trap errors within the Software, and to 
ensure that system outputs are safe;

 

•

 

Within the system, as independent verification that 
the rest of the system is behaving correctly, and to 
prevent it from causing the system to become 
unsafe; 

 

The safety enforcing part is usually referred to 
as an interlock or protection subsystem. Designing 
safety-critical systems is a complex endeavour 
particularly if extensive use of advanced electronics and 
information technology is used. The increased use of 
microcontrollers in modern automotive systems has 
brought many benefits such as the merging of chassis 
control systems for active safety with passive-safety 
systems. Unfortunately, it has also brought the potential 
for catastrophic failures. Thus, the widespread 
application of microcontrollers requires extreme care in 
order to produce a dependable system. Dependability 
involves reliability, safety, availability, and security but in 
this paper we are only concerned with safety, reliability, 
and availability.

 

The area of system safety is well-established 
and procedures exist to identify and analyse 
electromechanical hazards along with techniques to 
eliminate or limit hazards in a final product.

 

Unfortunately, much more is known about how to 

engineer safe mechanical systems than safe computing 
systems, particularly when software is a major 
component of the engineered system. With the 
increased used of software in safety-critical components 
of complex systems, governments agencies and other 
institutions are increasingly including requirements for 
software hazard analysis and verification of software 
safety.

 

Security

 

:

 

It has become clear that security 
attacks against information systems are a large

 

and 
growing problem. Attacks against both public and 
private networks can have devastating effects. The 
Internet is being used increasingly to provide 
communication service to business, and security attacks 
against the Internet are a troubling problem for

 

network 
users.

 

Although Internet attacks are important, private 
networks are a bigger concern. Money is moved locally 
and around the World on private networks owned by 
financial institutions. Transportation systems are 
monitored and controlled using mostly private networks. 
A successful attack against certain private networks 
could permit funds or valuable information such as 
credit card numbers to be stolen, transportation to be 
disrupted, and so on. The potential for loss is 
considerable, and, although no physical damage would 
be involved in security failures, the consequences of 
failure are such that many systems that only carry 
information should be regarded as safety-critical.

 

VII.     IMPLEMENTATION

 

Some programming language features prone to 
problems than others. This is because of number of 
reasons. Those are

 

1)

 

Programmers do errors while using the feature.

 

2)

 

Poor compilation or poor implementation.

 

3)

 

Programs written may be difficult to analyze and 
test.

 

Few programming language features that cause 
problems:

 
 

Usage of pointers

 

: It is very difficult to use the 
pointers in programming language .In order to use 
pointers; the developers’ need great understanding 
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of memory address and management. Programs 
which use pointers can be difficult to understand or 
analyze.

2) Memory Management :  The memory allocation and 
de-allocation is related to pointers. every 
programmer allocate memory but sometimes they 
forget to de-allocate .Compilers and operating 
systems frequently fail to fully recover de-allocated 
memory. The result is errors which are dependent 
on execution time, with a system mysteriously failing 
after a period of continuous operation.

3) Multiple Entry and Exits : More number of exit and 

1)



 

 
  

 
   

entry points to loops, blocks, procedures and 
functions, is really just a variation of unstructured 
programming. However, controlled use of more than 
one exit can simplify code and reduces the risk.

 

4)

 

Type of Data

 

:  where the type of data in a variable 
changes, or the structure of a record changes, is 
difficult to analyze, and can easily confuse a 
programmer leading to programming errors.

 
 

Declaration & Initialization

 

:  A simple spelling 
mistake can result in software which compiles,

 

but 
does not execute correctly. In the worst case 
individual units may appear to execute correctly, 
with the error only being detectable at a system 
level. Declaration must be perfect.

 
 

Parameter Passing

 

:

 

passing one procedure or 
function as a parameter to another procedure or 
function, is difficult to analyze and test thoroughly.

 

7)

 

Recursion

 

: Recursion is calling a function itself. It is 
difficult to analyze and test thoroughly. Recursion 
can also lead to unpredictable real time behavior. 

 

8)

 

Concurrency and Interrupts

 

: These features are 
supported directly by some programming 
languages only. Use of concurrency and interrupts 
is some what produce ambiguity.

 

The use of such programming language 
features in safety critical software is discouraged.

 

Most modern programming languages 
encourage the use of block structure and modular 
programming, such that programmers take good 
structure for granted. Well structured software is easier 
to analyze and test, and consequently less likely to 
contain errors.

 

The features of few programming languages 
which can be used to increase reliability are: 

 

1)

 

Perfect data usage

 

:

 

The data is only used and 
assigned where it is of a compatible type.

 

2)

 

Constraint checking

 

:

 

Ensure that arrays bounds are 
not violated, that data does not overflow, that zero 
division does not occur.

 

3)

 

Parameter checking

 

: To ensure that parameters 
passed to or from procedures and functions are of 
the correct type, are passed in the right direction (in 
or out) and contain valid data.

 

There are no commonly available programming 
languages which provide all of the good language 
features. The solution is to use a language subset, 
where a language with as many good features as 
possible is chosen, and the bad features are simply not 
used. Use of a subset requires discipline on behalf of 
the programmers and ideally a subset checking tool to 
catch the occasional mistake. An advantage of a subset 
approach is that the bounds of the subset can be 
flexible, to allow the use of some features in a limited 
and controlled way.

 
 

Ada is the preferred language for the 
implementation of safety critical software because it can 
be used effectively within the above constraints. The 

most popular Ada subset for safety critical software is 
the SPARKAda subset. 

 

SPARKAda is a subset of the Ada Programming 
Language that restricts several features of Ada such as 
unrestricted tasking. SPARKAda includes a built-in 
toolset called the ”Examimator” which tests the entire 
source code for conditional and unconditional data flow 
errors which in theory would deem the source code 
exception free. The disadvantage to SPARKAda is that is 
closed and proprietary which increases the cost of 
implementation. Since it is a closed format, outside 
community support is restricted and there is a higher 
risk of implementation with only one vendor to rely on for 
technical support and language updates.

 

VIII.    TESTING & VERIFICATION

 

Safety critical testing

 

: Testing of safety-critical 
systems follows  two  important  strategies  which  are 
systematic  rigorous  testing  and  static  analysis. While 
there is no substitute for rigorous testing at many levels: 
Unit, regression, functionality  and  integration  testing, 
testing   effectiveness  depends  on  the 

 

quality  of  the  
test cases  used. The best test suites are those that 
have good code coverage.  Statement coverage and 
condition Coverage are the most commonly used 
metrics.  Full Condition coverage is considered essential 
for safety-critical code, such

 

as flight control software. 
Achieving full coverage can be exceedingly time-
consuming and expensive.

 

Safety  critical  software  functions  provide  the 
source  of  requirements  to  be  tested.  Testing shall be 
performed to verify correct incorporation of software 
safety requirements.  Testing  must  show  that  hazards 
have  been  eliminated  or  controlled  to  an  acceptable 
level  of  risk.  Additional  hazardous  states  identified 
during  testing  shall  undergo  complete  analysis  prior  
to software  delivery  or  use.  Software  safety  testing  

integration  and acceptance tests. Acceptance testing 
shall verify correct operation  of  the  SCCSCs  in  
conjunction  with  system hardware  and  operators[36].  

Safety Critical Systems Analysis

© 2011 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
 V

ol
um

e 
X
I 
Is
su

e 
X
X
I 
 V

er
si
on

 I
 

  
  
     

  

41

  
 

20
11

D
ec

em
be

r

5)

6)

It  shall  verify  correct operation during stress conditions 
and in the presence of  system  faults.  It  is  important  
to  tailor  the  safety-critical testing effort to emphasize 
the parts of the software that need  additional  analysis  
and  testing.  The  greatest  effort must  be  placed  on  
the  hazards  posing  the  highest  risk. We consider it 
adequate to divide the software into two risk groups for 
test purposes. 

Verification is the most important and most 
expensive group of activities in the development of 
safety critical systems, with verification activities being 
associated with each stage of the development lifecycle.
An added complication is that independent verification
is usually required. The means by which this is achieved 
depends upon the integrity level. Independent 

of Safety-Critical Computer Software Components
(SCCSC)  shall  be  included  in  the  integration  and 



 

 

 

 
 

verification can vary from independent witnessing of 
tests, participation at reviews and audit of the 
developer's verification, to fully independent execution of 
all verification activities. Independent verification is an 
addition to verification conducted by developers, not a 
substitute for it.

 

According to ISO 9001 activity, reviews will be 
conducted as a part of verification. Reviews become 
more formal, including techniques

 

such as detailed 
walkthroughs of even the lowest level of design. The 
scope of reviews is extended to include safety criteria.

 

IX.     CONCLUSION

 

The choice of a language can have a significant 
impact on the success or failure of a safety-critical 
system. The language can impact the ease of validation, 
the number of defects, and many important parts of the 
development process.  Few languages are inherently 
“safe” as well as having good tool support, good 
documentation and wide usage.  

 

A general-purpose language, which is made 
“safe” by use of a subset and good tool support, is the 
best choice for a safety-critical system. Modelling 
languages show excellent promise as implementation 
languages for all types of software development, not just 
safety critical.

 

Safety critical software is a complex subject. 
This paper will give an analysis of safety critical system 
means about design, implementation, verification, 
Applications etc.

 

Although safety critical systems have been in 
use for many years, the development of safety critical 
software is still a relatively new and immature subject. 
New techniques and methodologies for safety critical 
software are a popular research topic with universities, 
and are now becoming available to industry. 

 

Tools supporting the development of safety critical 
software are now available, making the implementation 
of safety critical standards a practical prospect. 
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