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Abstract- Shortest Path problems are among the most 

studied network flow optimization problems with interesting 

applications in a wide range of fields. One such application is in 

the field of GPS routing systems. These systems need to quickly 

solve large shortest path problems but are typically embedded 

in devices with limited memory and external storage. 

Conventional techniques for solving shortest paths within large 

networks cannot be used as they are either too slow or require 

huge amounts of storage. In this project we have tried to 

reduce the runtime of conventional techniques by exploiting 

the physical structure of the road network and using network 

pre-processing techniques. Our algorithms may not guarantee 

optimal results but can offer significant savings in terms of 

memory requirements and processing speed. Our work uses   

heuristic estimates to bind the search and directs it towards a 

destination. We also associate a radius with each node that 

gives a measure of importance for roads in the network. The 

farther we get from either the origin or destination the more 

selective we become about the roads we travel  with greater 

importance (i.e. roads with larger radii).By using these 

techniques we were able to dramatically reduce the runtime 

performance compared to conventional techniques while still 

maintaining an acceptable level of accuracy. 
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I INTRODUCTION 

 

e consider a long-studied generalization of the 

shortest path problem, in which not one but several 

short paths must be produced. The k shortest paths problem 

is to list the k paths connecting a given source-destination 

pair in the digraph with minimum total length. Our 
techniques also apply to the problem of listing all paths 

shorter than some given threshold length. Due to the nature 

of routing applications, we need flexible and efficient 

shortest path procedures, both from a processing time point 

of view and also in terms of the memory requirements.   

Unfortunately, prior research does not provide a clear 

direction for choosing an algorithm when one faces the 

problem of computing shortest paths on real road networks. 

Past research in testing different shortest path algorithms 

suggests that Dijkstra‘s implementation with double                        
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the best algorithm for networks with nonnegative arc lengths 

[1, 2]. However like most popular papers on Shortest Path 

algorithms, they have concentrated their focus on algorithms 

that guarantee optimality and have worked on tuning data 

structures used in implementing these algorithms. Since no 

―best‖ algorithm currently exists for every kind of 

transportation problem, research in this field has recently 

moved to the design and implementation of ―heuristic‖ 

shortest path procedures, which are able to capture the 

peculiarities of the problem under consideration and 
improve the run time performance of a search, but at the 

cost of not guaranteeing optimality. As it is impossible to 

cover all search implementations, we use Dijkstra‘s 

algorithm as a building block to create an efficient search 

algorithm that implements an artificial intelligence approach 

to the routing problem that may not guarantee optimal 

results but gives significant savings in terms of memory 

requirements and processing speed. In the version of these 

problems studied here, cycles of repeated vertices are 

allowed. We first present a basic version of our algorithm, 

which is simple enough to be suitable for practical 

implementation while losing only a logarithmic factor in 
time complexity. We then show how to achieve optimal 

time (constant time per path once a shortest path tree has 

been computed) by applying Frederickson‘s algorithm for 

finding the minimum k elements in a heap-ordered tree. 

 

II DIFFERENT  SEARCH ALGORITHMS 

 

In the following subsections we discuss about different 

searching techniques. 

 

A. Intelligent Transport System 

 

To fully appreciate the merits of a search technique it is 

important to understand the commercial environment in 

which these techniques are implemented. Many route 

finding systems are currently in development worldwide and 
the majority form part of much larger systems to our paper 

manage and operate the road network more efficiently. 

These management infrastructures are known as Intelligent 

Transport Systems (ITS) and vary in complexity and size. 

These systems fall into two main categories, centralized and 

decentralized systems [3]. Centralized systems are linked to 

an information centre which collates and processes traffic 

and network information. Typically a driver requests a 

particular route from onboard electronics. The route is then 

relayed to a central location that carries out all the 

processing of the route. Decentralized systems on the other 

hand offer information to the driver which is computed 
onboard using local information sources. Typically such 

w 
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systems contain road network information on optical storage 

devices and electronics to feed a GPS.  

      

B. Network Definitions 

 

Before continuing let us introduce some notation and 

formally define the shortest path Problem. A network is a 
graph G = (N, A) consisting of a unique indexed set of 

nodes N With n = |N| and a spanning set of directed arcs A 

with m = |A|. Each arc a is represented as an ordered pair of 

nodes, in the form ―from node i to j‖, denoted by a = (i,j). 

Each arc (i,j) has an associated numerical value lij, which 

represents the Distance, time or cost incurred by traversing 

the arc. Each node i has a set of successors S(i) (i.e. the set 

of all nodes j: (i,j)A) and predecessors P(i) (i.e. set of all 

nodes j: (j,i) A). 
 

C. Search Algorithms 

 

One possible approach to solving shortest path problems 

would be to pre-calculate and store the shortest path from 
every node to every possible other node, which would allow 

us to answer a shortest path query in constant time. 

Unfortunately the required storage size and computation 

time grows with the square of the number of nodes. With 

realistic road networks in mind this processing would take 

years if not decades and be impossible to store. Hence to 

overcome this problem we require real time search 

techniques. From previous studies [1, 2, 4] we know that the 

implementation of labeling algorithms are the fastest for 

one-to-one searches.  

Two aspects are particularly important to the shortest 

path algorithms discussed in this project: 
i. The strategies used to select the next node to be 

visited during a search, and  

ii. The data structures utilized to maintain the set of 

previously visited nodes. 

A number of data structures can be used to manipulate the 

set of nodes in order to support search strategies. These data 

structures include arrays, singly and doubly linked lists, 

stacks, heaps, buckets and queues. Detailed definitions and 

operations related to these data structures are standard 

knowledge and are well documented. Past research has 

concentrated mainly on the issue of data structures, which 
can be manipulated and bounded to form clever techniques 

in creating priority queues for selecting nodes to be scanned. 

A good example of this is the Dijkstra implementation with 

double buckets [1]. In a labeling algorithm, the number of 

visited nodes during a search is a good indication of the size 

of the search space. This means that a search strategy which 

visits fewer nodes during a search is generally more efficient 

in terms of processing speed. The number of nodes visited 

depends on the depth d (i.e. the number of arcs on the 

optimal path) of the destination from the origin, and the 

branching factor b. For a ‗best first search‘ the number of 

nodes explored during a search is of the order O(bd) [3]. 
This exponential growth in the number of explored nodes is 

known as ―combinatorial explosion‖ and is the main 

obstacle in computing shortest paths in large networks. 

(Note that even though Dijkstra‘s algorithm is polynomial in 

the number of nodes n in the graph, this bound is no 

restriction on how the number of nodes visited varies with 

d). For general search this exponential growth with depth 

makes many problems unsolvable on current hardware, as 

memory is soon exhausted and a solution may take an 

unreasonable time to compute. These effects can be lessened 
by using artificial intelligence (heuristic type) techniques 

which will be discussed later. However let us first define 

and implement Dijkstra‘s labeling algorithm. 

 

D. Dijkstra’s Naive Implementation 

 

Your Dijkstra‘s labeling method is a central procedure in 

shortest path algorithms. The output of the labeling method 

is an out-tree from a source node s, to a set of nodes L. An 

out-tree is a tree originating from the source node to other 

nodes to which the shortest distance from the source node is 
known. This out-tree is constructed iteratively, and the 

shortest path from s to any destination node t in the tree is 

obtained upon termination of the method. 

Three pieces of information are required for each node i 

in the labeling method while constructing the shortest 

path tree: 

i. The distance label, d (i), 

ii. The parent-node/predecessor p (i), 

iii. The set of permanently labeled nodes L. 

The distance label d(i) stores an upper bound on the shortest 

path distance from s to i, while p(i) records the node that 

immediately precedes node i in the out-tree. If a node has 
not yet been added to the out-tree, it is considered 

‗unreached‘. Normally the distance label of an unreached 

node is set to infinity. When we know that the shortest path 

from node s to node i is also the absolute shortest path, then 

node i is called permanently labeled. When further 

improvement is expected to be made on the distance from 

the origin to node i, then node i is considered only 

temporarily labeled. It follows that d(i) is an upper bound on 

the shortest path distance to node i if node i is temporarily 

labeled, and d(i) represents the final optimal shortest path 

distance to node i if the node is permanently labeled [1,2]. 
By iteratively adding a temporarily labeled node with the 

smallest distance label d(i) to the set of permanently labeled 

nodes L, Dijkstra‘s algorithm guarantees optimality. One 

advantage with Dijkstra‘s labeling algorithm is that the 

algorithm can be terminated when the destination node is 

permanently labeled. Most other algorithms guarantee 

optimal shortest paths only upon termination when the entire 

shortest path tree has been explored. 

 

E. Symmetrical Dijkstra Algorithm 

 

Pohl adapted Dijkstra‘s shortest path algorithm to decrease 
the size of the search space [1]. Pohl‘s algorithm was the 

first to use a bi-directional search method. This algorithm 

consists of a forward search from an origin node to the 

destination node and a backwards search from the 

destination node to the origin node. This was done in an 

attempt to reduce the search complexity to O (bd/2) 
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compared to O(bd) as with Dijkstra‘s algorithm. This search 

method assumes that the two searches grow symmetrically 

and will meet in some middle area. Sometimes this might 

not be the case, and as a worst-case scenario, this might 

instead become two O (bd) searches. The symmetrical or Bi-

directional Dijkstra‘s algorithm by Pohl grows two search 

trees, one from the origin, giving a tree spanning a set of 
nodes LF for which the minimum distance/time from the 

origin is known, and a second from the destination that gives 

a tree spanning a set of nodes LB for which the minimum 

distance/time to the destination is known. We iteratively add 

one node to either LF or LB until there exists an arc crossing 

from LF to LB.  Like Dijkstra‘s algorithm Pohl‘s bi-

directional search chooses the node with the smallest cost 

label to label permanently. By selecting the new 

permanently labeled node from either the forward or 

backward phases we maintain the Dijkstra criterion required 

for optimality. 
 

F. A* Search 

 

So far we have examined search techniques that can be 

generalized for any network (as long as it does not contain 

negative length cycles). However the physical nature of real 

road networks motivates investigation into the possible use 

of heuristic solutions that exploit the near-Euclidean 

network structure to reduce solution times while hopefully 

obtaining near optimal paths. For most of these heuristics 

the goal is to bias a more focused search towards the 

destination. As we shall see, incorporating heuristic 
knowledge into a search can dramatically reduce solution 

times. When the underlying network is Euclidean or 

approximately Euclidean as is the case of road networks, 

then it is possible to improve the average case run time of 

the Dijkstra and Symmetrical Dijkstra algorithms. This is 

usually at the expense of optimality; solutions are now not 

guaranteed to be the best. Typically when solving problems 

on directly based or variations on Dijkstra‘s labeling 

algorithm 

.The A* algorithm by Hart and Nilsson [2] formalized the 

concept of integrating a heuristic into a search procedure. 
Instead of choosing the next node to label permanently as 

that with the least cost (as measured from the start node), the 

choice of node is based on the cost from the start node plus 

an estimate of proximity to the destination (a heuristic 

estimate) [4]. To build a shortest path from the origin s to 

the destination t, we use the original distance from s 

accumulated along the edges (as in Dijkstra‘s algorithm) 

Plus an estimate of the distance to t. Thus we use global 

information about our network to guide the search for the 

shortest path from s to t. This algorithm places more 

importance on paths leading towards t than paths moving 

away from t. In essence the A* algorithm combines two 
pieces of information: 

i. The current knowledge available about the upper 

bounds (given by the distance labels d (i)), and 

ii. An estimate of the distance from a leaf node of the 

search tree to the destination. 

There are several ways to estimate the lower bound from a 

leaf node in the search tree to the destination node. These 

estimations are carried out by so called ―evaluation‖ 

functions [3]. The closer this estimate is to a tight lower 

bound on the distance to the estimation, the better the 

quality of the A* Search. Hence the merits of an A* search 

depends highly on the evaluation function h(i,j). There are 

two main evaluation functions used in the A* search. A true 

lower bound between two points is the length of a straight 

line between those two points (i.e. the Euclidean distance): 

    H E ( i,t) = sqrt[( (x(i) -x(t))2+  ( y(i)- y(t))2]      

where x(i), y(i) and x(t), y(t) are the coordinates for node i 

and the destination node t respectively. The other commonly 

used evaluation function is the Manhattan distance hM. In 

this case the estimated lower bound distance is the sum of 

distance in the x and y coordinates. 

H M (i, t) = | x (i) - x (t)|+| y (i) - y (t)| 

The Manhattan distance is not the true lower bound between 

two points and hence will typically yield non-optimal 

results. By using time as a measure of cost, the network 

becomes near-Euclidean. This is because of the varying 

speeds of roads in the network. Roads of similar lengths 
might have different times associated with using those 

roads. If the network is not strictly 

Euclidean but near-Euclidean then our selection criteria for 

the next node to label permanently will not yield optimal 

results. By using the A* search, the shortest path tree should 

now grow towards t (unlike Dijkstra‘s algorithm where the 

tree grows approximately radially). As before, the search for 

the shortest path is terminated as soon as t is added to the 

shortest path tree. Earlier we discussed the problem of 

combinatorial explosion with a blind search time complexity 

in the order of O(bd). With A* search this is reduced to O 

(be
d) where be is the effective branching factor. The A* 

search reduces the search space by reducing the number of 

node expansions. Although A* is still susceptible to the 

problem of combinatorial explosion, it decreases the effect 

by reducing the size of the base in the complexity term. 

 

G. Weighted A* Search 

 

By choosing an appropriate multiplicative factor we can 

increase the contribution of the estimated component in 

calculating the label of a vertex (i.e. increase the 

contribution of the evaluation function) [4]. From an 
intuitive standpoint this corresponds to further biasing the 

forward search towards the destination and the backward 

search towards the origin. The heuristic is parameterized by 

the multiplicative factor termed the ―overdo‖ parameter used 

to weight the evaluation function. This modification will 

generally not yield optimal paths, but we would expect it to 

further reduce the search space. The aim is to find an 

―optimal‖ multiplicative or over do factor for which the 

running time is significantly improved while the solution 

quality is still acceptable. Thus there will be an empirical 
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time/performance trade-off as a function of the overdo 

parameter. 

 

H. Radius Search 

 

To eliminate or minimize the effects of combinatorial 

explosion we need to adopt a search technique similar to the 
way humans approach navigation problems. So far we have 

not implemented any intelligence once within a search 

which can filter out roads that are less likely to be traveled 

on. This type of intelligence requires some form of historical 

knowledge about the network. Since the road network does 

not change very often it is possible to calculate auxiliary 

information in a pre-processing step. Perhaps the most 

obvious way to classify the roads in the network is to 

identify the class of each road (i.e. motorways, highways, 

local roads etc), and then to exploit these classes in the 

search. This is similar to the way humans approach routing 
problems and is known as Hierarchical Search [3,5]. 

Hierarchical methods offer the prospect of greatly reducing 

the size of any search by simplifying the search through a 

series of simplified levels, where each of these levels is an 

abstraction of the previous level. These abstractions reduce 

the overall size of the search space that an algorithm 

addresses and thus the complexity of any search is reduced. 

For route finding, hierarchical levels are constructed in 

which higher speed roads are placed higher up in the 

hierarchy. However by introducing these arbitrary 

hierarchies the path optimality is often lost [3]. 

The hierarchical algorithm uses a discrete number of 
hierarchy levels. A Radius search is a hierarchical search 

with a continuous range of hierarchy levels. A Radius search 

takes advantage of the fact that the fastest path between two 

junctions is more likely to use a highway than a local road, 

especially if the two junctions are far apart. In this method 

each node i has an associated radius r(i). Before we consider 

how r(i) is calculated, we first examine how radii can be 

used to restrict a search. When looking for a shortest path 

from s to t, a node i is considered as a possible node to 

include in the search only if s or t lies inside a circle of 

radius r(i) cantered at node i. If both distances are greater 
than the node radius, the node is simply ignored [5].For any 

given origin and destination node, we can immediately 

simplify the network by removing all the nodes (and 

associated arcs) whose radii do not encircle the origin or 

destination nodes. The radius search is not a search 

algorithm by itself, but an independent mechanism of 

reducing search complexity. Hence the radius concept can 

be used in conjunction with any search algorithm. 

The optimal radius for a node i is the smallest radius r(i) for 

which the radius centred at node i encircles either the origin 

or destination node for all optimal paths that include node i. 

If the radii are calculated as a maximum over all such 
shortest paths, then it is guaranteed that the radius search 

algorithm is exact (i.e. guaranteed optimality). The radii are 

also minimal since with any smaller radius at least one 

optimal shortest path will not be found. One possible 

difficulty is that the calculation of the radii by examining all 

paths over a particular node takes much too long since every 

possible shortest path in the network has to be calculated at 

least once. Instead we implemented a heuristic approach to 

calculate these radii [5]. In the first phase of this heuristic 

approach we divide the network into overlapping grids of 

approximately 2000 nodes and initialize all node radii to be 

0. We then select a random starting node s from all possible 

nodes N and a random destination node t within the same 
grid as s. Using the Symmetric Dijkstra algorithm we solve 

for the shortest path R from s to t. We continue this process 

of selecting random starting and destination nodes and 

updating the radii of nodes in the shortest path as many 

times as possible. 

If we do not generate enough random paths in the first phase 

then the radii of some nodes will never have been updated 

and hence will still be 0. However if a node is a ‗closed 

node‘ (i.e. the node is only used in a shortest path if it is 

either the origin or destination of that shortest path) then it 

will never be part of a shortest path unless we start or finish 
at that node. Hence the radii of closed nodes  will always be 

0. In the second phase of this modified algorithm we go 

through all nodes in the network and examine their radii. If a 

node is not closed and has 0 radius, then we conduct shortest 

path searches in the vicinity of the nodes that generate a 

reasonable lower bound on its radius. We do this in the 

second phase by creating a sub graph of 200 of the closest 

nodes and associated arcs GSUB2 to the node with 0 radius 

and solve all-to-all shortest paths on GSUB2. This should 

force some shortest paths R through this node and give it a 

better radius lower bound than 0. So far in the first two 

phases we have calculated shortest paths within grids. Hence 
the radii are no larger than the grids they are created in. As a 

result, after the first two phases we have a fairly good 

coverage of local radii only (i.e. these radii only restrict a 

search for shortest paths within grids). If we were to use 

these radii to restrict a search over a large distance (i.e. over 

several grids) then we would not be able to find a path 

because no nodes exist which have radii greater than the size 

of a single grid. To travel over large distances we need to 

calculate radii of roads such as highways and motorways 

 

III CONCLUSION 
 

By exploiting the physical structure of road networks, the 

A* algorithm is able to bias its search towards a goal and 

reduce the search space. By using the concept of radii as a 

measure of importance of nodes, we are able to incorporate 

pre-processing within our shortest path algorithm to further 

restrict the search space. This dramatically reduces the 

search complexity in terms of the run time performance 

while still maintaining an acceptable level of inaccuracy.  

For a one to one shortest path or the shortest paths from one 

to some, it may be worthwhile to consider one of the 

Dijkstra ‘s implementations. But Dijkstra implementations 
depend on the maximum size of the network arc lengths 

Dijkstra approximate buckets implementation (DIKBA) is 

recommended for less arc length. For problems with a 

maximum arc length greater than 1500, the Dijkstra double 

buckets (DIKBD) implementation should also be considered 

since it appears to be less sensitive to problems in data set 1 
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with very large arc lengths. The Bellman Ford Moore 

implementations with parent checking (BFP) have serious 

difficulties on large networks. So this algorithm is not 

recommended for road network and for being coded in a 

GIS package. This system can efficiently generate less 

similar paths and provide users more wide choices than 

other system. Because of the simplicity of the topological 
structure and the k-shortest path algorithm, the developer 

can also easily develop a rich featured user interface for 

displaying and setting.  
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