
P a g e | 36 Vol. 10 Issue 1 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

GJCST Computing Classification
C.2.1 & C.2.5

Shortest Path Algorithms in Transportation

Networks
V.V.S.Chandra Mouli

1
,

S.Meena Kumari
2
, N.Geethanjali

3

Abstract- Shortest Path problems are among the most

studied network flow optimization problems with interesting

applications in a wide range of fields. One such application is in

the field of GPS routing systems. These systems need to quickly

solve large shortest path problems but are typically embedded

in devices with limited memory and external storage.

Conventional techniques for solving shortest paths within large

networks cannot be used as they are either too slow or require

huge amounts of storage. In this project we have tried to

reduce the runtime of conventional techniques by exploiting

the physical structure of the road network and using network

pre-processing techniques. Our algorithms may not guarantee

optimal results but can offer significant savings in terms of

memory requirements and processing speed. Our work uses

heuristic estimates to bind the search and directs it towards a

destination. We also associate a radius with each node that

gives a measure of importance for roads in the network. The

farther we get from either the origin or destination the more

selective we become about the roads we travel with greater

importance (i.e. roads with larger radii).By using these

techniques we were able to dramatically reduce the runtime

performance compared to conventional techniques while still

maintaining an acceptable level of accuracy.

Keywords- Routing, Shortest Path, Network, Radius.

I INTRODUCTION

e consider a long-studied generalization of the

shortest path problem, in which not one but several

short paths must be produced. The k shortest paths problem

is to list the k paths connecting a given source-destination

pair in the digraph with minimum total length. Our
techniques also apply to the problem of listing all paths

shorter than some given threshold length. Due to the nature

of routing applications, we need flexible and efficient

shortest path procedures, both from a processing time point

of view and also in terms of the memory requirements.

Unfortunately, prior research does not provide a clear

direction for choosing an algorithm when one faces the

problem of computing shortest paths on real road networks.

Past research in testing different shortest path algorithms

suggests that Dijkstra‘s implementation with double

Manuscript received “Feb 21, 2010 at 12:06 PM GMT”

1st V.V.S.Chandra Mouli, & 2nd S.Meena Kumari, Assistant

Professor, G.Pulla Reddy Engineering College, Kurnool ,

A.P, India

(Email: chandu2527@gmail.com)
3rd N.Geethanjali, Associate Professor, Computer Science

And Technology Department,Sri Krishna Devaraya

University ,Anantapur,A.P,India

(Email: anjali.csd@yahoo.com)

the best algorithm for networks with nonnegative arc lengths

[1, 2]. However like most popular papers on Shortest Path

algorithms, they have concentrated their focus on algorithms

that guarantee optimality and have worked on tuning data

structures used in implementing these algorithms. Since no

―best‖ algorithm currently exists for every kind of

transportation problem, research in this field has recently

moved to the design and implementation of ―heuristic‖

shortest path procedures, which are able to capture the

peculiarities of the problem under consideration and
improve the run time performance of a search, but at the

cost of not guaranteeing optimality. As it is impossible to

cover all search implementations, we use Dijkstra‘s

algorithm as a building block to create an efficient search

algorithm that implements an artificial intelligence approach

to the routing problem that may not guarantee optimal

results but gives significant savings in terms of memory

requirements and processing speed. In the version of these

problems studied here, cycles of repeated vertices are

allowed. We first present a basic version of our algorithm,

which is simple enough to be suitable for practical

implementation while losing only a logarithmic factor in
time complexity. We then show how to achieve optimal

time (constant time per path once a shortest path tree has

been computed) by applying Frederickson‘s algorithm for

finding the minimum k elements in a heap-ordered tree.

II DIFFERENT SEARCH ALGORITHMS

In the following subsections we discuss about different

searching techniques.

A. Intelligent Transport System

To fully appreciate the merits of a search technique it is

important to understand the commercial environment in

which these techniques are implemented. Many route

finding systems are currently in development worldwide and
the majority form part of much larger systems to our paper

manage and operate the road network more efficiently.

These management infrastructures are known as Intelligent

Transport Systems (ITS) and vary in complexity and size.

These systems fall into two main categories, centralized and

decentralized systems [3]. Centralized systems are linked to

an information centre which collates and processes traffic

and network information. Typically a driver requests a

particular route from onboard electronics. The route is then

relayed to a central location that carries out all the

processing of the route. Decentralized systems on the other

hand offer information to the driver which is computed
onboard using local information sources. Typically such

w

Global Journal of Computer Science and Technology Vol. 10 Issue 1 (Ver 1.0), April 2010 P a g e | 37

systems contain road network information on optical storage

devices and electronics to feed a GPS.

B. Network Definitions

Before continuing let us introduce some notation and

formally define the shortest path Problem. A network is a
graph G = (N, A) consisting of a unique indexed set of

nodes N With n = |N| and a spanning set of directed arcs A

with m = |A|. Each arc a is represented as an ordered pair of

nodes, in the form ―from node i to j‖, denoted by a = (i,j).

Each arc (i,j) has an associated numerical value lij, which

represents the Distance, time or cost incurred by traversing

the arc. Each node i has a set of successors S(i) (i.e. the set

of all nodes j: (i,j)A) and predecessors P(i) (i.e. set of all

nodes j: (j,i) A).

C. Search Algorithms

One possible approach to solving shortest path problems

would be to pre-calculate and store the shortest path from
every node to every possible other node, which would allow

us to answer a shortest path query in constant time.

Unfortunately the required storage size and computation

time grows with the square of the number of nodes. With

realistic road networks in mind this processing would take

years if not decades and be impossible to store. Hence to

overcome this problem we require real time search

techniques. From previous studies [1, 2, 4] we know that the

implementation of labeling algorithms are the fastest for

one-to-one searches.

Two aspects are particularly important to the shortest

path algorithms discussed in this project:
i. The strategies used to select the next node to be

visited during a search, and

ii. The data structures utilized to maintain the set of

previously visited nodes.

A number of data structures can be used to manipulate the

set of nodes in order to support search strategies. These data

structures include arrays, singly and doubly linked lists,

stacks, heaps, buckets and queues. Detailed definitions and

operations related to these data structures are standard

knowledge and are well documented. Past research has

concentrated mainly on the issue of data structures, which
can be manipulated and bounded to form clever techniques

in creating priority queues for selecting nodes to be scanned.

A good example of this is the Dijkstra implementation with

double buckets [1]. In a labeling algorithm, the number of

visited nodes during a search is a good indication of the size

of the search space. This means that a search strategy which

visits fewer nodes during a search is generally more efficient

in terms of processing speed. The number of nodes visited

depends on the depth d (i.e. the number of arcs on the

optimal path) of the destination from the origin, and the

branching factor b. For a ‗best first search‘ the number of

nodes explored during a search is of the order O(bd) [3].
This exponential growth in the number of explored nodes is

known as ―combinatorial explosion‖ and is the main

obstacle in computing shortest paths in large networks.

(Note that even though Dijkstra‘s algorithm is polynomial in

the number of nodes n in the graph, this bound is no

restriction on how the number of nodes visited varies with

d). For general search this exponential growth with depth

makes many problems unsolvable on current hardware, as

memory is soon exhausted and a solution may take an

unreasonable time to compute. These effects can be lessened
by using artificial intelligence (heuristic type) techniques

which will be discussed later. However let us first define

and implement Dijkstra‘s labeling algorithm.

D. Dijkstra’s Naive Implementation

Your Dijkstra‘s labeling method is a central procedure in

shortest path algorithms. The output of the labeling method

is an out-tree from a source node s, to a set of nodes L. An

out-tree is a tree originating from the source node to other

nodes to which the shortest distance from the source node is
known. This out-tree is constructed iteratively, and the

shortest path from s to any destination node t in the tree is

obtained upon termination of the method.

Three pieces of information are required for each node i

in the labeling method while constructing the shortest

path tree:

i. The distance label, d (i),

ii. The parent-node/predecessor p (i),

iii. The set of permanently labeled nodes L.

The distance label d(i) stores an upper bound on the shortest

path distance from s to i, while p(i) records the node that

immediately precedes node i in the out-tree. If a node has
not yet been added to the out-tree, it is considered

‗unreached‘. Normally the distance label of an unreached

node is set to infinity. When we know that the shortest path

from node s to node i is also the absolute shortest path, then

node i is called permanently labeled. When further

improvement is expected to be made on the distance from

the origin to node i, then node i is considered only

temporarily labeled. It follows that d(i) is an upper bound on

the shortest path distance to node i if node i is temporarily

labeled, and d(i) represents the final optimal shortest path

distance to node i if the node is permanently labeled [1,2].
By iteratively adding a temporarily labeled node with the

smallest distance label d(i) to the set of permanently labeled

nodes L, Dijkstra‘s algorithm guarantees optimality. One

advantage with Dijkstra‘s labeling algorithm is that the

algorithm can be terminated when the destination node is

permanently labeled. Most other algorithms guarantee

optimal shortest paths only upon termination when the entire

shortest path tree has been explored.

E. Symmetrical Dijkstra Algorithm

Pohl adapted Dijkstra‘s shortest path algorithm to decrease
the size of the search space [1]. Pohl‘s algorithm was the

first to use a bi-directional search method. This algorithm

consists of a forward search from an origin node to the

destination node and a backwards search from the

destination node to the origin node. This was done in an

attempt to reduce the search complexity to O (bd/2)

P a g e | 38 Vol. 10 Issue 1 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

compared to O(bd) as with Dijkstra‘s algorithm. This search

method assumes that the two searches grow symmetrically

and will meet in some middle area. Sometimes this might

not be the case, and as a worst-case scenario, this might

instead become two O (bd) searches. The symmetrical or Bi-

directional Dijkstra‘s algorithm by Pohl grows two search

trees, one from the origin, giving a tree spanning a set of
nodes LF for which the minimum distance/time from the

origin is known, and a second from the destination that gives

a tree spanning a set of nodes LB for which the minimum

distance/time to the destination is known. We iteratively add

one node to either LF or LB until there exists an arc crossing

from LF to LB. Like Dijkstra‘s algorithm Pohl‘s bi-

directional search chooses the node with the smallest cost

label to label permanently. By selecting the new

permanently labeled node from either the forward or

backward phases we maintain the Dijkstra criterion required

for optimality.

F. A* Search

So far we have examined search techniques that can be

generalized for any network (as long as it does not contain

negative length cycles). However the physical nature of real

road networks motivates investigation into the possible use

of heuristic solutions that exploit the near-Euclidean

network structure to reduce solution times while hopefully

obtaining near optimal paths. For most of these heuristics

the goal is to bias a more focused search towards the

destination. As we shall see, incorporating heuristic
knowledge into a search can dramatically reduce solution

times. When the underlying network is Euclidean or

approximately Euclidean as is the case of road networks,

then it is possible to improve the average case run time of

the Dijkstra and Symmetrical Dijkstra algorithms. This is

usually at the expense of optimality; solutions are now not

guaranteed to be the best. Typically when solving problems

on directly based or variations on Dijkstra‘s labeling

algorithm

.The A* algorithm by Hart and Nilsson [2] formalized the

concept of integrating a heuristic into a search procedure.
Instead of choosing the next node to label permanently as

that with the least cost (as measured from the start node), the

choice of node is based on the cost from the start node plus

an estimate of proximity to the destination (a heuristic

estimate) [4]. To build a shortest path from the origin s to

the destination t, we use the original distance from s

accumulated along the edges (as in Dijkstra‘s algorithm)

Plus an estimate of the distance to t. Thus we use global

information about our network to guide the search for the

shortest path from s to t. This algorithm places more

importance on paths leading towards t than paths moving

away from t. In essence the A* algorithm combines two
pieces of information:

i. The current knowledge available about the upper

bounds (given by the distance labels d (i)), and

ii. An estimate of the distance from a leaf node of the

search tree to the destination.

There are several ways to estimate the lower bound from a

leaf node in the search tree to the destination node. These

estimations are carried out by so called ―evaluation‖

functions [3]. The closer this estimate is to a tight lower

bound on the distance to the estimation, the better the

quality of the A* Search. Hence the merits of an A* search

depends highly on the evaluation function h(i,j). There are

two main evaluation functions used in the A* search. A true

lower bound between two points is the length of a straight

line between those two points (i.e. the Euclidean distance):

 H E (i,t) = sqrt[((x(i) -x(t))2+ (y(i)- y(t))2]

where x(i), y(i) and x(t), y(t) are the coordinates for node i

and the destination node t respectively. The other commonly

used evaluation function is the Manhattan distance hM. In

this case the estimated lower bound distance is the sum of

distance in the x and y coordinates.

H M (i, t) = | x (i) - x (t)|+| y (i) - y (t)|

The Manhattan distance is not the true lower bound between

two points and hence will typically yield non-optimal

results. By using time as a measure of cost, the network

becomes near-Euclidean. This is because of the varying

speeds of roads in the network. Roads of similar lengths
might have different times associated with using those

roads. If the network is not strictly

Euclidean but near-Euclidean then our selection criteria for

the next node to label permanently will not yield optimal

results. By using the A* search, the shortest path tree should

now grow towards t (unlike Dijkstra‘s algorithm where the

tree grows approximately radially). As before, the search for

the shortest path is terminated as soon as t is added to the

shortest path tree. Earlier we discussed the problem of

combinatorial explosion with a blind search time complexity

in the order of O(bd). With A* search this is reduced to O

(be
d) where be is the effective branching factor. The A*

search reduces the search space by reducing the number of

node expansions. Although A* is still susceptible to the

problem of combinatorial explosion, it decreases the effect

by reducing the size of the base in the complexity term.

G. Weighted A* Search

By choosing an appropriate multiplicative factor we can

increase the contribution of the estimated component in

calculating the label of a vertex (i.e. increase the

contribution of the evaluation function) [4]. From an
intuitive standpoint this corresponds to further biasing the

forward search towards the destination and the backward

search towards the origin. The heuristic is parameterized by

the multiplicative factor termed the ―overdo‖ parameter used

to weight the evaluation function. This modification will

generally not yield optimal paths, but we would expect it to

further reduce the search space. The aim is to find an

―optimal‖ multiplicative or over do factor for which the

running time is significantly improved while the solution

quality is still acceptable. Thus there will be an empirical

Global Journal of Computer Science and Technology Vol. 10 Issue 1 (Ver 1.0), April 2010 P a g e | 39

time/performance trade-off as a function of the overdo

parameter.

H. Radius Search

To eliminate or minimize the effects of combinatorial

explosion we need to adopt a search technique similar to the
way humans approach navigation problems. So far we have

not implemented any intelligence once within a search

which can filter out roads that are less likely to be traveled

on. This type of intelligence requires some form of historical

knowledge about the network. Since the road network does

not change very often it is possible to calculate auxiliary

information in a pre-processing step. Perhaps the most

obvious way to classify the roads in the network is to

identify the class of each road (i.e. motorways, highways,

local roads etc), and then to exploit these classes in the

search. This is similar to the way humans approach routing
problems and is known as Hierarchical Search [3,5].

Hierarchical methods offer the prospect of greatly reducing

the size of any search by simplifying the search through a

series of simplified levels, where each of these levels is an

abstraction of the previous level. These abstractions reduce

the overall size of the search space that an algorithm

addresses and thus the complexity of any search is reduced.

For route finding, hierarchical levels are constructed in

which higher speed roads are placed higher up in the

hierarchy. However by introducing these arbitrary

hierarchies the path optimality is often lost [3].

The hierarchical algorithm uses a discrete number of
hierarchy levels. A Radius search is a hierarchical search

with a continuous range of hierarchy levels. A Radius search

takes advantage of the fact that the fastest path between two

junctions is more likely to use a highway than a local road,

especially if the two junctions are far apart. In this method

each node i has an associated radius r(i). Before we consider

how r(i) is calculated, we first examine how radii can be

used to restrict a search. When looking for a shortest path

from s to t, a node i is considered as a possible node to

include in the search only if s or t lies inside a circle of

radius r(i) cantered at node i. If both distances are greater
than the node radius, the node is simply ignored [5].For any

given origin and destination node, we can immediately

simplify the network by removing all the nodes (and

associated arcs) whose radii do not encircle the origin or

destination nodes. The radius search is not a search

algorithm by itself, but an independent mechanism of

reducing search complexity. Hence the radius concept can

be used in conjunction with any search algorithm.

The optimal radius for a node i is the smallest radius r(i) for

which the radius centred at node i encircles either the origin

or destination node for all optimal paths that include node i.

If the radii are calculated as a maximum over all such
shortest paths, then it is guaranteed that the radius search

algorithm is exact (i.e. guaranteed optimality). The radii are

also minimal since with any smaller radius at least one

optimal shortest path will not be found. One possible

difficulty is that the calculation of the radii by examining all

paths over a particular node takes much too long since every

possible shortest path in the network has to be calculated at

least once. Instead we implemented a heuristic approach to

calculate these radii [5]. In the first phase of this heuristic

approach we divide the network into overlapping grids of

approximately 2000 nodes and initialize all node radii to be

0. We then select a random starting node s from all possible

nodes N and a random destination node t within the same
grid as s. Using the Symmetric Dijkstra algorithm we solve

for the shortest path R from s to t. We continue this process

of selecting random starting and destination nodes and

updating the radii of nodes in the shortest path as many

times as possible.

If we do not generate enough random paths in the first phase

then the radii of some nodes will never have been updated

and hence will still be 0. However if a node is a ‗closed

node‘ (i.e. the node is only used in a shortest path if it is

either the origin or destination of that shortest path) then it

will never be part of a shortest path unless we start or finish
at that node. Hence the radii of closed nodes will always be

0. In the second phase of this modified algorithm we go

through all nodes in the network and examine their radii. If a

node is not closed and has 0 radius, then we conduct shortest

path searches in the vicinity of the nodes that generate a

reasonable lower bound on its radius. We do this in the

second phase by creating a sub graph of 200 of the closest

nodes and associated arcs GSUB2 to the node with 0 radius

and solve all-to-all shortest paths on GSUB2. This should

force some shortest paths R through this node and give it a

better radius lower bound than 0. So far in the first two

phases we have calculated shortest paths within grids. Hence
the radii are no larger than the grids they are created in. As a

result, after the first two phases we have a fairly good

coverage of local radii only (i.e. these radii only restrict a

search for shortest paths within grids). If we were to use

these radii to restrict a search over a large distance (i.e. over

several grids) then we would not be able to find a path

because no nodes exist which have radii greater than the size

of a single grid. To travel over large distances we need to

calculate radii of roads such as highways and motorways

III CONCLUSION

By exploiting the physical structure of road networks, the

A* algorithm is able to bias its search towards a goal and

reduce the search space. By using the concept of radii as a

measure of importance of nodes, we are able to incorporate

pre-processing within our shortest path algorithm to further

restrict the search space. This dramatically reduces the

search complexity in terms of the run time performance

while still maintaining an acceptable level of inaccuracy.

For a one to one shortest path or the shortest paths from one

to some, it may be worthwhile to consider one of the

Dijkstra ‘s implementations. But Dijkstra implementations
depend on the maximum size of the network arc lengths

Dijkstra approximate buckets implementation (DIKBA) is

recommended for less arc length. For problems with a

maximum arc length greater than 1500, the Dijkstra double

buckets (DIKBD) implementation should also be considered

since it appears to be less sensitive to problems in data set 1

P a g e | 40 Vol. 10 Issue 1 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

with very large arc lengths. The Bellman Ford Moore

implementations with parent checking (BFP) have serious

difficulties on large networks. So this algorithm is not

recommended for road network and for being coded in a

GIS package. This system can efficiently generate less

similar paths and provide users more wide choices than

other system. Because of the simplicity of the topological
structure and the k-shortest path algorithm, the developer

can also easily develop a rich featured user interface for

displaying and setting.

IV REFERENCES

1) Coello, C. A. C.,(1999). An Updated Survey of

Evolutionary Multiobjective Optimization

Techniques: State of the Artand Future Trends,(

1999). Proceedings of the Congress on

Evolutionary Computation, 1, 3-13, IEEE Press,6-9
2) Cormen T.H, Introduction to Algorithms. MIT

Press, Massachusetts, USA. Cherkassy B V,

Goldberg A V and Radzik T. (1993) Shortest Paths

Algorithms:

3) Theory and Experimental Evaluation. Research

project, Department of Computer Science, Cornell

and Stanford Universities and Krasikova Institute

for Economics and Mathematics.

4) Hart P E and Nilson N J. (1968) A formal basis of

the heuristic determination of minimum cost paths.

IEEE Transactions of Systems Science and

Cybernetics 4(2), 100-107. 45 Pearsons J. (1998)
Heuristic Search in Route Finding. Master‘s

Thesis, University of Auckland.

5) Sedgewick R and Vitter J S. (1986) Shortest Paths

in Euclidean Graphs Algorithmica 1, 31-48.

6) Ertl G.(1996) Optimierung und Kontrolle, Shortest

Path Calculations in Large Road Networks. Project

in Discrete Optimisation, Karl-Franzens-

Universitat Graz .

7) Aggarwal, B. Schieber, and T. Tokuyama (1993).

Finding a minimum weight K-link path in graphs

with Monge property and applications. Proc. 9th
Symp. Computational Geometry, pp. 189–197.

Assoc. for Computing Machinery.

8) R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E.

Tarjan. (1990) Faster algorithms for the shortest

path problem. J. Assoc. Comput. Mach. 37:213–

223. Assoc. for Computing Machinery.

9) Azevedo, M. E. O. Santos Costa, J. J. E. R.

Silvestre Madeira, and E. Q. V. Martins (1993). An

algorithm for the ranking of shortest paths. Eur. J.

Operational Research 69:97–106.

	Shortest Path Algorithms in Transportation Networks
	Author
	I INTRODUCTION
	II DIFFERENT SEARCH ALGORITHMS
	A. Intelligent Transport System
	B. Network Definitions
	C. Search Algorithms
	D. Dijkstra’s Naive Implementation
	E. Symmetrical Dijkstra Algorithm
	F. A* Search
	G. Weighted A* Search
	H. Radius Search

	III CONCLUSION
	IV REFERENCES

