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6

Abstract7

Algorithms for concurrent data structure have gained attention in recent years as multi-core8

processors have become ubiquitous. Several features of shared-memory multiprocessors make9

concurrent data structures significantly more difficult to design and to verify as correct than10

their sequential counterparts. The primary source of this additional difficulty is concurrency.11

This paper provides an overview of the some concurrent access algorithms for different data12

structures.13

14

Index terms— concurrency, lock-free, non-blocking, mem- ory management, compares and swap, elimination15

1 Introduction16

concurrent data structure is a particular way of storing and organizing data for access by multiple computing17
threads (or processes) on a computer. The proliferation of commercial shared-memory multiprocessor machines18
has brought about significant changes in the art of concurrent programming. Given current trends towards low19
cost chip multithreading (CMT), such machines are bound to become ever more widespread. Shared-memory20
multiprocessors are systems that concurrently execute multiple threads of computation which communicate and21
synchronize through data structures in shared memory. Designing concurrent data structures and ensuring their22
correctness is a difficult task, significantly more challenging than doing so for their sequential counterparts. The23
difficult of concurrency is aggravated by the fact that threads are asynchronous since they are subject to page24
faults, interrupts, and so on. To manage the difficulty of concurrent programming, multithreaded applications25
need synchronization to ensure threadsafety by coordinating the concurrent accesses of the threads. At the same26
time, it is crucial to allow many operations to make progress concurrently and complete without interference27
in order to utilize the parallel processing capabilities of contemporary architectures. The traditional way to28
implement shared data structures is to use mutual exclusion (locks) to ensure that concurrent operations do29
not interfere with one another. Locking has a number of disadvantages with respect to software engineering,30
fault-tolerance, and scalability. In response, researchers have investigated a variety of alternative synchronization31
techniques that do not employ mutual exclusion. A synchronization technique is Author ? ?: Kurukshetra32
University, Kurukshetra. e-mails: kaurranjeet 2203@gmail.com, pushpa.suri@yahoo.com wait-free if it ensures33
that every thread will continue to make progress in the face of arbitrary delay (or even failure) of other threads.34
It is lock-free if it ensures only that some thread always makes progress. While waitfree synchronization is the35
ideal behavior (thread starvation is unacceptable), lock-free synchronization is often good enough for practical36
purposes (as long as starvation, while possible in principle, never happens in practice).The synchronization37
primitives provided by most modern architectures, such as compare-and-swap (CAS) or load-locked/store-38
conditional (LL/SC) are powerful enough to achieve wait-free (or lock-free) implementations of any linearizable39
data object [23]. The remaining paper will discussed about the different data structures, concurrency control40
methods and various techniques given for the concurrent access to these data structures.41
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8 A) BLOCKING

2 II.42

3 Data Structures43

Data can be organized in many ways and a data structure is one of these ways. It is used to represent data44
in the memory of the computer so that the processing of data can be done in easier way. In other words, data45
structures are the logical and mathematical model of a particular organization of data. Different kinds of data46
structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For47
example, B-trees are particularly well-suited for implementation of databases, while compiler implementations48
usually use hash tables to look up identifiers. A data structure can be broadly classified into (i) Primitive data49
structure (ii) Nonprimitive data structure.50

Primitive Data Structure: The data structures, typically those data structure that are directly operated upon51
by machine level instructions i.e. the fundamental data types such as int, float.52

Non-Primitive Data Structure: The data structures, which are not primitive, are called non-primitive data53
structures. There are two types of-primitive data structures.54

4 a) Linear Data Structures55

A list, which shows the relationship of adjacency between elements, is said to be linear data structure. The most,56
simplest linear data structure is a 1-D array, but because of its deficiency, list is frequently used for different57
kinds of data.A [0] A[1] A[2] A[3] A[4]58

A [5] Figure ?? : A 1-D Array of 6 Elements.59

5 b) Non-Linear Data Structure60

A list, which doesn’t show the relationship of adjacency between elements, is said to be non-linear data structure.61
i. Linear Data Structure A list is an ordered list, which consists of different data items connected by means of62

a link or pointer. This type of list is also called a linked list. A linked list may be a single list or double linked63
list.64

? Single linked list: A single linked list is used to traverse among the nodes in one direction.65

6 Concurrency Control66

Simultaneous execution of multiple threads/process over a shared data structure access can create several data67
integrity and consistency problems:68

? Lost Updates.69
? Uncommitted Data.70

7 ? Inconsistent retrievals71

All above are the reasons for introducing the concurrency control over the concurrent access of shared data72
structure. Concurrent access to data structure shared among several processes must be synchronized in order73
to avoid conflicting updates. Synchronization is referred to the idea that multiple processes are to join up or74
handshake at a certain points, in order to reach agreement or commit to a certain sequence of actions. The thread75
synchronization or serialization strictly defined is the application of particular mechanisms to ensure that two76
concurrently executing threads or processes do not execute specific portions of a program at the same time. If one77
thread has begun to execute a serialized portion of the program, any other thread trying to execute this portion78
must wait until the first thread finishes. Concurrency control techniques can be divided into two categories.79

? Blocking ? Non-blocking Both of these are discussed in below sub-sections.80

8 a) Blocking81

Blocking algorithms allow a slow or delayed process to prevent faster processes from completing operations on82
the shared data structure indefinitely. On asynchronous (especially multiprogrammed) multiprocessor systems,83
blocking algorithms suffer significant performance degradation when a process is halted or delayed at an84
inopportune moment. Many of the existing concurrent data structure algorithms that have been developed85
use mutual exclusion i.e. some form of locking.86

Mutual exclusion degrades the system’s overall performance as it causes blocking, due to that other concurrent87
operations cannot make any progress while the access to the shared resource is blocked by the lock. The limitation88
of blocking approach are given below89

? Priority Inversion: occurs when a high-priority process requires a lock holded by a lower-priority process.90
? Convoying: occurs when a process holding a lock is rescheduled by exhausting its quantum, by a page fault91

or by some other kind of interrupt. In this case, running processes requiring the lock are unable to progress.92
? Deadlock: can occur if different processes attempt to lock the same set of objects in different orders.93
? Locking techniques are not suitable in a real-time context and more generally, they suffer significant94

performance degradation on multiprocessors systems.95
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9 b) Non-Blocking96

Non-blocking algorithm Guarantees that the data structure is always accessible to all processes and an inactive97
process cannot render the data structure inaccessible. Such an algorithm ensures that some active process will98
be able to complete an operation in a finite number of steps making the algorithm robust with respect to process99
failure [22]. In the following sections we discuss various non-blocking properties with different strength.100

? Wait-Freedom: A method is wait-free if every call is guaranteed to finish in a finite number of steps. If a101
method is bounded wait-free then the number of steps has a finite upper bound, from this definition it follows102
that wait-free methods are never blocking, therefore deadlock cannot happen. Additionally, as each participant103
can progress after a finite number of steps (when the call finishes), wait-free methods are free of starvation.104

? Lock-Freedom: Lock-freedom is a weaker property than wait-freedom. In the case of lock-free calls, infinitely105
often some method finishes in a finite number of steps. This definition implies that no deadlock is possible for106
lock-free calls. On the other hand, the guarantee that some call finishes in a finite number of steps is not enough107
to guarantee that all of them eventually finish. In other words, lock-freedom is not enough to guarantee the lack108
of starvation.109

? Obstruction-Freedom: Obstruction-freedom is the weakest non-blocking guarantee discussed here. A method110
is called obstruction-free if there is a point in time after which it executes in isolation (other threads make no111
steps, e.g.: become suspended), it finishes in a bounded number of steps. All lockfree objects are obstruction-free,112
but the opposite is generally not true. Optimistic concurrency control (OCC) methods are usually obstruction-113
free. The OCC approach is that every participant tries to execute its operation on the shared object, but if114
a participant detects conflicts from others, it rolls back the modifications, and tries again according to some115
schedule. If there is a point in time, where one of the participants is the only one trying, the operation will116
succeed.117

In the sequential setting, data structures are crucially important for the performance of the respective118
computation. In the parallel programming setting, their importance becomes more crucial because of the increased119
use of data and resource sharing for utilizing parallelism. In parallel programming, computations are split into120
subtasks in order to introduce parallelization at the control/computation level. To utilize this opportunity of121
concurrency, subtasks share data and various resources (dictionaries, buffers, and so forth). This makes it possible122
for logically independent programs to share various resources and data structures.123

Concurrent data structure designers are striving to maintain consistency of data structures while keeping the124
use of mutual exclusion and expensive synchronization to a minimum, in order to prevent the data structure from125
becoming a sequential bottleneck. Maintaining consistency in the presence of many simultaneous updates is a126
complex task. Standard implementations of data structures are based on locks in order to avoid inconsistency of127
the shared data due to concurrent modifications. In simple terms, a single lock around the whole data structure128
may create a bottleneck in the program where all of the tasks serialize, resulting in a loss of parallelism because129
too few data locations are concurrently in use. Deadlocks, priority inversion, and convoying are also side-effects of130
locking. The risk for deadlocks makes it hard to compose different blocking data structures since it is not always131
possible to know how closed source libraries do their locking. Lock-free implementations of data structures support132
concurrent access. They do not involve mutual exclusion and make sure that all steps of the supported operations133
can be executed concurrently. Lock-free implementations employ an optimistic conflict control approach, allowing134
several processes to access the shared data object at the same time. They suffer delays only when there is an135
actual conflict between operations that causes some operations to retry. This feature allows lock-free algorithms136
to scale much better when the number of processes increases. An implementation of a data structure is called137
lock-free if it allows multiple processes/threads to access the data structure concurrently and also guarantees138
that at least one operation among those finishes in a finite number of its own steps regardless of the state of the139
other operations. A consistency (safety) requirement for lock-free data structures is linearizability [24], which140
ensures that each operation on the data appears to take effect instantaneously during its actual duration and the141
effect of all operations are consistent with the object’s sequential specification. Lock-free data structures offer142
several advantages over their blocking counterparts, such as being immune to deadlocks, priority inversion, and143
convoying, and have been shown to work well in practice in many different settings [26,25].144

The remaining paper will explore the access of different data structures like stack, queue, trees, priority145
queue, and linked list in concurrent environment. How the sequence of data structure operations changes during146
concurrent access. These techniques will be based on blocking and non-blocking.147

IV.148

10 Literature Review a) Stack Data Structure149

Stack is the simplest sequential data structures. Numerous issues arise in designing concurrent versions of150
these data structures, clearly illustrating the challenges involved in designing data structures for shared-memory151
multiprocessors. A concurrent stack is a data structure linearizable to a sequential stack that provides push and152
pop operations with the usual LIFO semantics. Various alternatives exist for the behavior of these data structures153
in full or empty states, including returning a special value indicating the condition, raising an exception, or154
blocking.155

There are several lock-based concurrent stack implementations in the literature. Typically, lock-based stack156
algorithms are expected to offer limited robustness.157
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10 LITERATURE REVIEW A) STACK DATA STRUCTURE

The first non-blocking implementation of concurrent link based stack was first proposed by Trieber et al [1]. It158
represented the stack as a singly linked list with a top pointer. It uses compare-and-swap to modify the value of159
Top atomically. However, this stack was very simple and can be expected to be quite efficient, but no performance160
results were reported for nonblocking stacks. When Michael et. al [2] compare the performance of Treiber’s stack161
to an optimized nonblocking algorithm based on Herlihy’s methodology [28], and several lock-based stacks such162
as an MCS lock in low load situations [29]. They concluded that Treiber’s algorithm yields the best overall163
performance, but this performance gap increases as the degree of multiprogramming grows. All this happen due164
to contention and an inherent sequential bottleneck.165

Hendler et al. [3] observe that any stack implementation can be made more scalable using the elimination166
technique [23]. Elimination allows pairs of operations with reverse semantics like pushes and pops on a stack-to167
complete without any central coordination, and therefore substantially aids scalability. The idea is that if a pop168
operation can find a concurrent push operation to ”partner” with, then the pop operation can take the push169
operation’s value, and both operations can return immediately. b) Queue Data Structure A concurrent queue170
is a data structure that provides enqueue and dequeue operations with the usual FIFO semantics. Valois et.al171
[4] presented a list-based nonblocking queue. The represented algorithm allows more concurrency by keeping a172
dummy node at the head (dequeue end) of a singly linked list, thus simplifying the special cases associated with173
empty and single-item. Unfortunately, the algorithm allows the tail pointer to lag behind the head pointer, thus174
preventing dequeuing processes from safely freeing or reusing dequeued nodes. If the tail pointer lags behind175
and a process frees a dequeued node, the linked list can be broken, so that subsequently enqueued items are176
lost. Since memory is a limited resource, prohibiting memory reuse is not an acceptable option. Valois therefore177
proposed a special mechanism to free and allocate memory. The mechanism associates a reference counter with178
each node. Each time a process creates a pointer to a node it increments the node’s reference counter atomically.179
When it does not intend to access a node that it has accessed before, it decrements the associated reference180
counter atomically. In addition to temporary links from processlocal variables, each reference counter reflects the181
number of links in the data structure that point to the node in question. For a queue, these are the head and tail182
pointers and linked-list links. A node is freed only when no pointers in the data structure or temporary variables183
point to it. Drawing ideas from the previous authors, Michel et.al [5] presented a new non-blocking concurrent184
queue algorithm, which is simple, fast, and practical. The algorithm implements the queue as a singly-linked list185
with Head and Tail pointers. Head always points to a dummy node, which is the first node in the list. Tail points186
to either the last or second to last node in the list. The algorithm uses compare and swap, with modification187
counters to avoid the ABA problem. To allow dequeuing processes to free dequeue nodes, the dequeue operation188
ensures that Tail does not point to the dequeued node nor to any of its predecessors. This means that dequeued189
nodes may safely be re-used.190

The Mark et al [6] introduced a scaling technique for queue data structure which was earlier applied to LIFO191
data structures like stack. They transformed existing nonscalable FIFO queue implementations into scalable192
implementations using the elimination technique, while preserving lock-freedom and linearizability.193

In all previously FIFO queue algorithms, concurrent Enqueue and Dequeue operations synchronized on a194
small number of memory locations, such algorithms can only allow one Enqueue and one Dequeue operation to195
complete in parallel, and therefore cannot scale to large numbers of concurrent operations. In the LIFO structures196
elimination works by allowing opposing operations such as pushes and pops to exchange values in a pair wise197
distributed fashion without synchronizing on a centralized data structure. This technique was straightforward198
in LIFO ordered structures [23]. However, this approach seemingly contradicts in a queue data structure, a199
Dequeue operation must take the oldest value currently waiting in the queue. It apparently cannot eliminate200
with a concurrent Enqueue. For example, if a queue contains a single value 1, then after an Enqueue of 2 and a201
Dequeue, the queue contains 2, regardless of the order of these operations. Thus, because the queue changes, we202
cannot simply eliminate the Enqueue and Dequeue. In a empty queue , we could eliminate an Enqueue-Dequeue203
pair, because in this case the queue is unchanged by an Enqueue immediately followed by a Dequeue. In case204
when queue is non empty , we must be aware with linearizability correctness condition [24,25], which requires205
that we can order all operations in such a way that the operations in this order respect the FIFO queue semantics,206
but also so that no process can detect that the operations did not actually occur in this order. If one operation207
completes before another begins, then we must order them in this order. Otherwise, if the two are concurrent,208
we are free to order them however we wish. Key to their approach was the observation that they wanted to use209
elimination when the load on the queue is high. In such cases, if an Enqueue operation is unsuccessful in an210
attempt to access the queue, it will generally back off before retrying. If in the meantime all values that were211
in the queue when the Enqueue began are dequeued, then we can ”pretend” that the Enqueue did succeed in212
adding its value to the tail of the queue earlier, and that it now has reached the head and can be dequeued by an213
eliminating Dequeue. Thus, they used time spent backing off to ”age” the unsuccessful Enqueue operations so214
that they become ”ripe” for elimination. Because this time has passed, we ensure that the Enqueue operation is215
concurrent with Enqueue operations that succeed on the central queue, and this allows us to order the Enqueue216
before some of them, even though it never succeeds on the central queue.217

The key is to ensure that Enqueues are eliminated only after sufficient aging. c) Linked List Data Structure218
Implementing linked lists efficiently is very important, as they act as building blocks for many other data219
structures. The first implementation designed for lock-free linked lists was presented by Valois et .al [19]. The220
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main idea behind this approach was to maintain auxiliary nodes in between normal nodes of the list in order to221
resolve the problems that arise because of interference between concurrent operations. Also, each node in his list222
had a backlink pointer which was set to point to the predecessor when the node was deleted. These backlinks223
were then used to backtrack through the list when there was interference from a concurrent deletion. Another224
lock-free implementation of linked lists was given by Harris et. al [20]. His main idea was to mark a node before225
deleting it in order to prevent concurrent operations from changing its right pointer. The previous approach226
was simpler than later one. Yet another implementation of a lock-free linked list was proposed by Michael [21].227
The represented Technique used [20] design to implement the lock free linked list structure. The represented228
algorithm was compatible with efficient memory management techniques unlike [20] algorithm.229

11 d) Tree Data Structure230

A concurrent implementation of any search tree can be achieved by protecting it using a single exclusive lock.231
Concurrency can be improved somewhat by using a reader-writer lock to allow all read-only (search) operations232
to execute concurrently with each other while holding the lock.233

Kung and Lehman et al. [7] presented a concurrent binary search tree implementation in which update234
operations hold only a constant number of node locks at a time, and these locks only exclude other update235
operations: search operations are never blocked. However, this implementation makes no attempt to keep the236
search tree balanced.237

In the context of B+-trees Lehman et al. [8] has expanded some of the ideas of previous technique. The238
algorithm has property that any process for manipulating the tree uses only a small number of locks at any time,239
no search through the tree is ever prevented from reading any node, for that purpose they have considered a240
variant of B* -Tree called Blink-tree.241

The Blink-tree is a B*-tree modified by adding a single ”link” pointer field to each node This link field points242
to the next node at the same level of the tree as the current node, except that the link pointer of the rightmost243
node on a level is a null pointer. This definition for link pointers is consistent, since all leaf nodes lie at the same244
level of the tree. The Blink-tree has all of the nodes at a particular level chained together into a linked list.245

In fact, in [8] algorithm, update operations as well as search operations use the lock coupling technique so246
that no operation ever holds more than two locks at a time, which significantly improves concurrency. This247
technique has been further refined, so that operations never hold more than one lock at a time [9]. The presented248
algorithm not addressed how nodes can be merged, instead allowing delete operations to leave nodes underfull.249
They argue that in many cases delete operations are rare, and that if space utilization becomes a problem,250
the tree can occasionally be reorganized in ”batch” mode by exclusively locking the entire tree. Lanin et al.251
[10] incorporate merging into the delete operations, similarly to how insert operations split overflowed nodes252
in previous implementations. Similar to [8] technique, these implementations use links to allow recovery by253
operations that have mistakenly reached a node that has been evacuated due to node merging. In all of the254
algorithms discussed above, the maintenance operations such as node splitting and merging (where applicable)255
are performed as part of the regular update operations.256

12 e) Priority Queue Data Structure257

The Priority Queue abstract data type is a collection of items which can efficiently support finding the item258
with the highest priority. Basic operations are Insert (add an item), FindMin (finds the item with minimum259
(or maximum) priority), and DeleteMin (removes the item with minimum (or maximum) priority). DeleteMin260
returns the item removed.261

? Heap-Based Priority Queues: Many of the concurrent priority queue constructions in the literature are262
linearizable versions of the heap structures. Again, the basic idea is to use finegrained locking of the individual263
heap nodes to allow threads accessing different parts of the data structure to do so in parallel where possible. A264
key issue in designing such concurrent heaps is that traditionally insert operations proceed from the bottom up265
and delete-min operations from the top down, which creates potential for deadlock. Biswas et al. [11] present266
such a lock-based heap algorithm assuming specialized ”cleanup” threads to overcome deadlocks. Rao et al. [12]267
suggest to overcome the drawbacks of [11] using an algorithm that has both insert and delete-min operations268
proceed from the top down. Ayani et.al [13] improved on their algorithm by suggesting a way to have consecutive269
insertions be performed on opposite sides of the heap. Hunt et al. [14] present a heap based algorithm that270
overcomes many of the limitations of the above schemes, especially the need to acquire multiple locks along the271
traversal path in the heap. It proceeds by locking for a short duration a variable holding the size of the heap and272
a lock on either the first or last element of the heap. In order to increase parallelism, insertions traverse the heap273
bottom-up while deletions proceed top-down, without introducing deadlocks. Insertions also employ a left-right274
technique as in [13] to allow them to access opposite sides on the heap and thus minimize interference.275

Unfortunately, the empirical evidence shows, the performance of [14] does not scale beyond a few tens of276
concurrent processors. As concurrency increases, the algorithm’s locking of a shared counter location, introduces277
a sequential bottleneck that hurts performance. The root of the tree also becomes a source of contention and278
a major problem when the number of processors is in the hundreds. In summary, both balanced search trees279
and heaps suffer from the typical scalability impediments of centralized structures: sequential bottlenecks and280
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18 CONCLUSION

increased contention. The solution proposed by lotal et.al [15] is to design concurrent priority queues based on281
the highly distributed SkipList data structures of Pugh [31,32].282

SkipLists are search structures based on hierarchically ordered linked-lists, with a probabilistic guarantee of283
being balanced. The basic idea behind SkipLists is to keep elements in an ordered list, but have each record in284
the list be part of up to a logarithmic number of sub-lists. These sub-lists play the same role as the levels of a285
binary search structure, having twice the number of items as one goes down from one level to the next. To search286
a list of N items, O (log N) level lists are traversed, and a constant number of items is traversed per level, making287
the expected overall complexity of an Insert or Delete operation on a SkipList O(logN). Author introduced the288
SkipQueue, a highly distributed priority queue based on a simple modification of Pugh’s concurrent SkipList289
algorithm [31]. Inserts in the SkipQueue proceed down the levels as in [31]. For Delete-min, multiple minimal”290
elements are to be handed out concurrently. This means that one must coordinate the requests, with minimal291
contention and bottlenecking, even though Delete-mins are interleaved with Insert operations. The solution was292
as follows, keep a specialized delete pointer which points to the current minimal item in this list. By following293
the pointer, each Delete-min operation directly traverses the lowest level list, until it finds an unmarked item,294
which it marks as \deleted.” It then proceeds to perform a regular Delete operation by searching the SkipList for295
the items immediately preceding the item deleted at each level of the list and then redirecting their pointers in296
order to remove the deleted node.297

Sundell et.al [16] given an efficient and practical lock-free implementation of a concurrent priority queue that is298
suitable for both fully concurrent (large multi- processor) systems as well as pre-emptive (multiprocess) systems.299
Inspired by [15], the algorithm was based on the randomized Skiplist [28] data structure, but in contrast to [15]300
it is lock-free. The algorithm was based on the sequential Skiplist data structure invented by Pugh [32]. This301
structure uses randomization and has a probabilistic time complexity of O(logN) where N is the maximum number302
of elements in the list. The data structure is basically an ordered list with randomly distributed short-cuts in303
order to improve search times, In order to make the Skiplist construction concurrent and non-blocking; author304
used three of the standard atomic synchronization primitives, Test-And-Set (TAS), Fetch-And-Add (FAA) and305
Compare-And-Swap (CAS). To insert or delete a node from the list we have to change the respective set of306
next pointers. These have to be changed consistently, but not necessary all at once. The solution was to have307
additional information on each node about its deletion (or insertion) status. This additional information will308
guide the concurrent processes might traverse into one partial deleted or inserted node. When we have changed309
all necessary next pointers, the node is fully deleted or inserted.310

? Tree-Based Priority Pools: Huang and Weihl et al. [18] and Johnson et al. [17] describe concurrent311
priority pools: priority queues with relaxed semantics that do not guarantee linearizability of the delete-min312
operations. Their designs were based on a modified concurrent B+-tree implementation. Johnson introduces313
a ”delete bin” that accumulates values to be deleted and thus reduces the load when performing concurrent314
delete-min operations.315

V. This was a first lock-free approach for concurrent priority queue A highly concurrent priority queue based316
on the b-link tree Avoid the serialization bottleneck Needs node to be locked in order to be rebalance317

13 Comparison and Analysis318

14 Linked list319

Lock-free linked lists using compare-and-swap Reduced interference of concurrent operations using backlink nodes320
A pragmatic implementation of non-blocking linked-lists For making successful updating of nodes, every node to321
be deleted was marked322

15 Difficult to implement323

High performance dynamic lock-free hash tables and list-based sets.324

16 Efficient with memory management techniques325

Poor in performance.326

17 VI.327

18 Conclusion328

This paper reviews the different data structures and the concurrency control techniques with respect to different329
data structures (tree, queue, priority queue). The algorithms are categorized on the concurrency control330
techniques like blocking and non-blocking. Former based on locks and later one can be lock-free, wait-free331
or obstruction free. In the last we can see that lock free approach outperforms over locking based approach. 1332
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