
© 2014. Ms. Ranjeet Kaur & Dr. Pushpa Rani Suri. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Software & Data Engineering
Volume 14 Issue 3 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Concurrent Access Algorithms for Different Data Structures: A
Research Review

 By Ms. Ranjeet Kaur & Dr. Pushpa Rani Suri
 Kurukshetra University, India

Abstract - Algorithms for concurrent data structure have gained attention in recent years as multi-core
processors have become ubiquitous. Several features of shared-memory multiprocessors make
concurrent data structures significantly more difficult to design and to verify as correct than their
sequential counterparts. The primary source of this additional difficulty is concurrency. This paper
provides an overview of the some concurrent access algorithms for different data structures.

Keywords: concurrency, lock-free, non-blocking, mem-ory management, compares and swap,
elimination.

GJCST-C Classification : E.

ConcurrentAccessAlgorithmsforDifferentDataStructuresAResearchReview

Strictly as per the compliance and regulations of:

1

Global Journal of Computer Science and Technology: C

Concurrent Access Algorithms for Different Data
Structures: A Research Review

Ms. Ranjeet Kaur α & Dr. Pushpa Rani Suri σ

Abstract- Algorithms for concurrent data structure have gained
attention in recent years as multi-core processors have
become ubiquitous. Several features of shared-memory
multiprocessors make concurrent data structures significantly
more difficult to design and to verify as correct than their
sequential counterparts. The primary source of this additional
difficulty is concurrency. This paper provides an overview of
the some concurrent access algorithms for different data
structures.
Keywords: concurrency, lock-free, non-blocking, mem-
ory management, compares and swap, elimination.

I. Introduction

 concurrent data structure is a particular way of
storing and organizing data for access by multiple
computing threads (or processes) on a computer.

The proliferation of commercial shared-memory
multiprocessor machines has brought about significant
changes in the art of concurrent programming. Given
current trends towards low cost chip multithreading
(CMT), such machines are bound to become ever more
widespread. Shared-memory multiprocessors are
systems that concurrently execute multiple threads of
computation which communicate and synchronize
through data structures in shared memory. Designing
concurrent data structures and ensuring their
correctness is a difficult task, significantly more
challenging than doing so for their sequential
counterparts. The difficult of concurrency is aggravated
by the fact that threads are asynchronous since they are
subject to page faults, interrupts, and so on. To manage
the difficulty of concurrent programming, multithreaded
applications need synchronization to ensure thread-
safety by coordinating the concurrent accesses of the
threads. At the same time, it is crucial to allow many
operations to make progress concurrently and complete
without interference in order to utilize the parallel
processing capabilities of contemporary architectures.
The traditional way to implement shared data structures
is to use mutual exclusion (locks) to ensure that
concurrent operations do not interfere with one another.
Locking has a number of disadvantages with respect to
software engineering, fault-tolerance, and scalability. In
response, researchers have investigated a variety of
alternative synchronization techniques that do not
employ mutual exclusion. A synchronization technique is

Author α σ: Kurukshetra University, Kurukshetra.
e-mails: kaurranjeet 2203@gmail.com, pushpa.suri@yahoo.com

wait-free if it ensures that every thread will continue to
make progress in the face of arbitrary delay (or even
failure) of other threads. It is lock-free if it ensures only
that some thread always makes progress. While wait-
free synchronization is the ideal behavior (thread
starvation is unacceptable), lock-free synchronization is
often good enough for practical purposes (as long as
starvation, while possible in principle, never happens in
practice).The synchronization primitives provided by
most modern architectures, such as compare-and-swap
(CAS) or load-locked/store-conditional (LL/SC) are
powerful enough to achieve wait-free (or lock-free)
implementations of any linearizable data object [23].
The remaining paper will discussed about the different
data structures, concurrency control methods and
various techniques given for the concurrent access to
these data structures.

II. Data Structures

Data can be organized in many ways and a
data structure is one of these ways. It is used to
represent data in the memory of the computer so that
the processing of data can be done in easier way. In
other words, data structures are the logical and
mathematical model of a particular organization of data.
Different kinds of data structures are suited to different
kinds of applications, and some are highly specialized
to specific tasks. For example, B-trees are particularly
well-suited for implementation of databases, while
compiler implementations usually use hash tables to
look up identifiers. A data structure can be broadly
classified into (i) Primitive data structure (ii) Non-
primitive data structure.

Primitive Data Structure: The data structures, typically
those data structure that are directly operated upon by
machine level instructions i.e. the fundamental data
types such as int, float.

Non-Primitive Data Structure: The data structures, which
are not primitive, are called non-primitive data
structures. There are two types of-primitive data
structures.

a) Linear Data Structures
A list, which shows the relationship of adjacency

between elements, is said to be linear data structure.
The most, simplest linear data structure is a 1-D array,
but because of its deficiency, list is frequently used for
different kinds of data.

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

A [0] A[1] A[2] A[3] A[4] A[5]

Figure 1 : A 1-D Array of 6 Elements.

b) Non-Linear Data Structure
A list, which doesn’t show the relationship of

adjacency between elements, is said to be non-linear
data structure.

i. Linear Data Structure
A list is an ordered list, which consists of

different data items connected by means of a link or
pointer. This type of list is also called a linked list. A
linked list may be a single list or double linked list.

• Single linked list: A single linked list is used to
traverse among the nodes in one direction.

Figure 2 : A single three Nodes linked list.

Double linked list: A double linked list is used to traverse
among the nodes in both the directions.
A list has two subsets. They are: -
Stack: It is also called as last-in-first-out (LIFO) system.
It is a linear list in which insertion and deletion take place
only at one end. It is used to evaluate different
expressions.

Figure 3 : A Stack with Elements.

• Queue: It is also called as first-in-first-out (FIFO)
system. It is a linear list in which insertion takes
place at once end and deletion takes place at other
end. It is generally used to schedule a job in
operating systems and networks.

Figure

4 : A Queue with 6 Elements.

ii. Non-Linear Data Structure
The frequently used non-linear data structures are

• Trees: It maintains hierarchical relationship between
various elements

Figure 5 : A Binary Tree.

• Graphs: It maintains random relationship or point-
to-point relationship between various elements.

 Concurrency Control

Simultaneous execution of multiple
threads/process over a shared data structure access
can create several data integrity and consistency
problems:

• Lost Updates.

• Uncommitted Data.

• Inconsistent retrievals
All above are the reasons for introducing the

concurrency control over the concurrent access of
shared data structure. Concurrent access to data
structure shared among several processes must be
synchronized in order to avoid conflicting updates.
Synchronization is referred to the idea that multiple
processes are to join up or handshake at a certain
points, in order to reach agreement or commit to a
certain sequence of actions. The thread synchronization
or serialization strictly defined is the application of
particular mechanisms to ensure that two concurrently
executing threads or processes do not execute specific
portions of a program at the same time. If one thread
has begun to execute a serialized portion of the
program, any other thread trying to execute this portion
must wait until the first thread finishes.
Concurrency control techniques can be divided into two
categories.

• Blocking
• Non-blocking
Both of these are discussed in below sub-sections.

a) Blocking
Blocking algorithms allow a slow or delayed

process to prevent faster processes from completing
operations on the shared data structure indefinitely. On
asynchronous (especially multiprogrammed) multip-
rocessor systems, blocking algorithms suffer significant
performance degradation when a process is halted or
delayed at an inopportune moment. Many of the existing

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

2

(
DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Concurrent Access Algorithms for Different Data Structures: A Research Review

III.

concurrent data structure algorithms that have been
developed use mutual exclusion i.e. some form of
locking.

Mutual exclusion degrades the system’s overall
performance as it causes blocking, due to that other
concurrent operations cannot make any progress while
the access to the shared resource is blocked by the
lock. The limitation of blocking approach are given
below

• Priority Inversion: occurs when a high-priority
process requires a lock holded by a lower-priority
process.

• Convoying: occurs when a process holding a lock is
rescheduled by exhausting its quantum, by a page
fault or by some other kind of interrupt. In this case,
running processes requiring the lock are unable to
progress.

• Deadlock: can occur if different processes attempt
to lock the same set of objects in different orders.

• Locking techniques are not suitable in a real-time
context and more generally, they suffer significant
performance degradation on multiprocessors
systems.

b) Non-Blocking
Non-blocking algorithm Guarantees that the

data structure is always accessible to all processes and
an inactive process cannot render the data structure
inaccessible. Such an algorithm ensures that some
active process will be able to complete an operation in a
finite number of steps making the algorithm robust with
respect to process failure [22]. In the following sections
we discuss various non-blocking properties with
different strength.

• Wait-Freedom: A method is wait-free if every call is
guaranteed to finish in a finite number of steps. If a
method is bounded wait-free then the number of
steps has a finite upper bound, from this definition it
follows that wait-free methods are never blocking,
therefore deadlock cannot happen. Additionally, as
each participant can progress after a finite number
of steps (when the call finishes), wait-free methods
are free of starvation.

• Lock-Freedom: Lock-freedom is a weaker property
than wait-freedom. In the case of lock-free calls,
infinitely often some method finishes in a finite
number of steps. This definition implies that no
deadlock is possible for lock-free calls. On the other
hand, the guarantee that some call finishes in a
finite number of steps is not enough to guarantee
that all of them eventually finish. In other words,
lock-freedom is not enough to guarantee the lack of
starvation.

• Obstruction-Freedom: Obstruction-freedom is the
weakest non-blocking guarantee discussed here. A

method is called obstruction-free if there is a point in
time after which it executes in isolation (other
threads make no steps, e.g.: become suspended),
it finishes in a bounded number of steps. All lock-
free objects are obstruction-free, but the opposite is
generally not true. Optimistic concurrency control
(OCC) methods are usually obstruction-free. The
OCC approach is that every participant tries to
execute its operation on the shared object, but if a
participant detects conflicts from others, it rolls back
the modifications, and tries again according to
some schedule. If there is a point in time, where one
of the participants is the only one trying, the
operation will succeed.

In the sequential setting, data structures are
crucially important for the performance of the respective
computation. In the parallel programming setting, their
importance becomes more crucial because of the
increased use of data and resource sharing for utilizing
parallelism. In parallel programming, computations are
split into subtasks in order to introduce parallelization at
the control/computation level. To utilize this opportunity
of concurrency, subtasks share data and various
resources (dictionaries, buffers, and so forth). This
makes it possible for logically independent programs to
share various resources and data structures.

Concurrent data structure designers are striving
to maintain consistency of data structures while keeping
the use of mutual exclusion and expensive
synchronization to a minimum, in order to prevent the
data structure from becoming a sequential bottleneck.
Maintaining consistency in the presence of many
simultaneous updates is a complex task. Standard
implementations of data structures are based on locks
in order to avoid inconsistency of the shared data due to
concurrent modifications. In simple terms, a single lock
around the whole data structure may create a bottleneck
in the program where all of the tasks serialize, resulting
in a loss of parallelism because too few data locations
are concurrently in use. Deadlocks, priority inversion,
and convoying are also side-effects of locking. The risk
for deadlocks makes it hard to compose different
blocking data structures since it is not always possible
to know how closed source libraries do their locking.
Lock-free implementations of data structures support
concurrent access. They do not involve mutual exclusion
and make sure that all steps of the supported
operations can be executed concurrently. Lock-free
implementations employ an optimistic conflict control
approach, allowing several processes to access the
shared data object at the same time. They suffer delays
only when there is an actual conflict between operations
that causes some operations to retry. This feature allows
lock-free algorithms to scale much better when the
number of processes increases. An implementation of a
data structure is called lock-free if it allows multiple
processes/threads to access the data structure

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

20
14

c

concurrently and also guarantees that at least one
operation among those finishes in a finite number of its
own steps regardless of the state of the other
operations. A consistency (safety) requirement for
lock-free data structures is linearizability [24], which
ensures that each operation on the data appears to take
effect instantaneously during its actual duration and the
effect of all operations are consistent with the object’s
sequential specification. Lock-free data structures offer
several advantages over their blocking counterparts,
such as being immune to deadlocks, priority inversion,
and convoying, and have been shown to work well in
practice in many different settings [26, 25].

The remaining paper will explore the access of
different data structures like stack, queue, trees, priority
queue, and linked list in concurrent environment. How
the sequence of data structure operations changes
during concurrent access. These techniques will be
based on blocking and non-blocking.

IV. Literature Review

a) Stack Data Structure
Stack is the simplest sequential data structures.

Numerous issues arise in designing concurrent versions
of these data structures, clearly illustrating the
challenges involved in designing data structures for
shared-memory multiprocessors. A concurrent stack is a
data structure linearizable to a sequential stack that
provides push and pop operations with the usual LIFO
semantics. Various alternatives exist for the behavior of
these data structures in full or empty states, including
returning a special value indicating the condition, raising
an exception, or blocking.

There are several lock-based concurrent stack
implementations in the literature. Typically, lock-based
stack algorithms are expected to offer limited
robustness.

The first non-blocking implementation of
concurrent link based stack was first proposed by
Trieber et al [1]. It represented the stack as a singly
linked list with a top pointer. It uses compare-and-swap
to modify the value of Top atomically. However, this
stack was very simple and can be expected to be quite
efficient, but no performance results were reported for
nonblocking stacks. When Michael et. al [2] compare
the performance of Treiber’s stack to an optimized
nonblocking algorithm based on Herlihy’s methodology
[28], and several lock-based stacks such as an MCS
lock in low load situations[29]. They concluded that
Treiber’s algorithm yields the best overall performance,
but this performance gap increases as the degree of
multiprogramming grows. All this happen due to
contention and an inherent sequential bottleneck.

Hendler et al. [3] observe that any stack
implementation can be made more scalable using the
elimination technique [23]. Elimination allows pairs of

operations with reverse semantics like pushes and pops
on a stack-to complete without any central coordination,
and therefore substantially aids scalability. The idea is
that if a pop operation can find a concurrent push
operation to “partner” with, then the pop operation can
take the push operation’s value, and both operations
can return immediately.

b) Queue Data Structure
A concurrent queue is a data structure that

provides enqueue and dequeue operations with the
usual FIFO semantics. Valois et.al [4] presented a
list-based nonblocking queue. The represented
algorithm allows more concurrency by keeping a
dummy node at the head (dequeue end) of a singly
linked list, thus simplifying the special cases associated
with empty and single-item. Unfortunately, the algorithm
allows the tail pointer to lag behind the head pointer,
thus preventing dequeuing processes from safely
freeing or reusing dequeued nodes. If the tail pointer
lags behind and a process frees a dequeued node, the
linked list can be broken, so that subsequently
enqueued items are lost. Since memory is a limited
resource, prohibiting memory reuse is not an acceptable
option. Valois therefore proposed a special mechanism
to free and allocate memory. The mechanism
associates a reference counter with each node. Each
time a process creates a pointer to a node it increments
the node's reference counter atomically. When it does
not intend to access a node that it has accessed before,
it decrements the associated reference counter
atomically. In addition to temporary links from process-
local variables, each reference counter reflects the
number of links in the data structure that point to the
node in question. For a queue, these are the head and
tail pointers and linked-list links. A node is freed only
when no pointers in the data structure or temporary
variables point to it. Drawing ideas from the previous
authors, Michel et.al [5] presented a new non-blocking
concurrent queue algorithm, which is simple, fast, and
practical. The algorithm implements the queue as a
singly-linked list with Head and Tail pointers. Head
always points to a dummy node, which is the first node
in the list. Tail points to either the last or second to last
node in the list. The algorithm uses compare and swap,
with modification counters to avoid the ABA problem. To
allow dequeuing processes to free dequeue nodes, the
dequeue operation ensures that Tail does not point to
the dequeued node nor to any of its predecessors. This
means that dequeued nodes may safely be re-used.

The Mark et al [6] introduced a scaling
technique for queue data structure which was earlier
applied to LIFO data structures like stack. They
transformed existing nonscalable FIFO queue
implementations into scalable implementations using
the elimination technique, while preserving lock-freedom
and linearizability.

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

4

(
DDDD

)
Y
e
a
r

20
14

c

In all previously FIFO queue algorithms, concurrent
Enqueue and Dequeue operations synchronized on a
small number of memory locations, such algorithms can
only allow one Enqueue and one Dequeue operation to
complete in parallel, and therefore cannot scale to large
numbers of concurrent operations. In the LIFO
structures elimination works by allowing opposing
operations such as pushes and pops to exchange
values in a pair wise distributed fashion without
synchronizing on a centralized data structure. This
technique was straightforward in LIFO ordered
structures [23]. However, this approach seemingly
contradicts in a queue data structure, a Dequeue
operation must take the oldest value currently waiting in
the queue. It apparently cannot eliminate with a
concurrent Enqueue. For example, if a queue contains a
single value 1, then after an Enqueue of 2 and a
Dequeue, the queue contains 2, regardless of the order
of these operations.

Figure 6 :

Shows an Example Execution

Thus, because the queue changes, we cannot
simply eliminate the Enqueue and Dequeue. In a empty
queue , we could eliminate an Enqueue-Dequeue pair,
because in this case the queue is unchanged by an
Enqueue immediately followed by a Dequeue. In case
when queue is non empty , we must be aware with
linearizability correctness condition [24,25], which
requires that we can order all operations in such a way
that the operations in this order respect the FIFO queue
semantics, but also so that no process can detect that
the operations did not actually occur in this order. If one
operation completes before another begins, then we
must order them in this order. Otherwise, if the two are
concurrent, we are free to order them however we wish.
Key

to their approach was the observation that they

wanted to use elimination when the load on the queue is
high. In such cases, if an Enqueue operation is
unsuccessful in an attempt to access the queue, it will
generally back off before retrying. If in the meantime all
values that were in the queue when the Enqueue began
are dequeued, then we can “pretend” that the Enqueue
did succeed in adding its value to the tail of the queue
earlier, and that it now has reached the head and can be
dequeued by an eliminating Dequeue. Thus, they used
time spent backing off to “age” the unsuccessful
Enqueue operations so that they become “ripe” for
elimination. Because this time has passed, we ensure

that the Enqueue operation is concurrent with Enqueue
operations that succeed on the central queue, and this
allows us to order the Enqueue before some of them,
even though it never succeeds on the central queue.
The key is to ensure that Enqueues are eliminated only
after sufficient aging.

c) Linked List Data Structure
Implementing linked lists efficiently is very

important, as they act as building blocks for many other
data structures. The first implementation designed for
lock-free linked lists was presented by Valois et .al [19].
The main idea behind this approach was to maintain
auxiliary nodes in between normal nodes of the list in
order to resolve the problems that arise because of
interference between concurrent operations. Also, each
node in his list had a backlink pointer which was set to
point to the predecessor when the node was deleted.
These backlinks were then used to backtrack through
the list when there was interference from a concurrent
deletion. Another lock-free implementation of linked lists
was given by Harris et. al[20]. His main idea was to
mark a node before deleting it in order to prevent
concurrent operations from changing its right pointer.
The previous approach was simpler than later one. Yet
another implementation of a lock-free linked list was
proposed by Michael [21]. The represented Technique
used [20] design to implement the lock free linked list
structure. The represented algorithm was compatible
with efficient memory management techniques unlike
[20] algorithm.

d) Tree Data Structure
A concurrent implementation of any search tree

can be achieved by protecting it using a single exclusive
lock. Concurrency can be improved somewhat by using
a reader-writer lock to allow all read-only (search)
operations to execute concurrently with each other while
holding the lock.

Kung and Lehman et al. [7] presented a
concurrent binary search tree implementation in which
update operations hold only a constant number of node
locks at a time, and these locks only exclude other
update operations: search operations are never
blocked. However, this implementation makes no
attempt to keep the search tree balanced.

In the context of B+-trees Lehman et al.[8] has
expanded some of the ideas of previous technique. The
algorithm has property that any process for
manipulating the tree uses only a small number of locks
at any time, no search through the tree is ever prevented
from reading any node, for that purpose they have
considered a variant of B* -Tree called Blink- tree.

The Blink-tree is a B*-tree modified by adding a
single “link” pointer field to each node This link field
points to the next node at the same level of the tree as
the current node, except that the link pointer of the
rightmost node on a level is a null pointer. This definition

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

5

(
DDDD DDDD

)
Y
e
a
r

20
14

c

for link pointers is consistent, since all leaf nodes lie at
the same level of the tree. The Blink-tree has all of the
nodes at a particular level chained together into a linked
list.

In fact, in [8] algorithm, update operations as
well as search operations use the lock coupling
technique so that no operation ever holds more than two
locks at a time, which significantly improves
concurrency. This technique has been further refined, so
that operations never hold more than one lock at a time
[9]. The presented algorithm not addressed how nodes
can be merged, instead allowing delete operations to
leave nodes underfull. They argue that in many cases
delete operations are rare, and that if space utilization
becomes a problem, the tree can occasionally be
reorganized in “batch” mode by exclusively locking the
entire tree. Lanin et al. [10] incorporate merging into the
delete operations, similarly to how insert operations split
overflowed nodes in previous implementations. Similar
to [8] technique, these implementations use links to
allow recovery by operations that have mistakenly
reached a node that has been evacuated due to node
merging. In all of the algorithms discussed above, the
maintenance operations such as node splitting and
merging (where applicable) are performed as part of the
regular update operations.

e) Priority Queue Data Structure
The Priority Queue abstract data type is a

collection of items which can efficiently support finding
the item with the highest priority. Basic operations are
Insert (add an item), FindMin (finds the item with
minimum (or maximum) priority), and DeleteMin
(removes the item with minimum (or maximum) priority).
DeleteMin returns the item removed.

• Heap-Based Priority Queues: Many of the
concurrent priority queue constructions in the
literature are linearizable versions of the heap
structures. Again, the basic idea is to use fine-
grained locking of the individual heap nodes to
allow threads accessing different parts of the data
structure to do so in parallel where possible. A key
issue in designing such concurrent heaps is that
traditionally insert operations proceed from the
bottom up and delete-min operations from the top
down, which creates potential for deadlock. Biswas
et al. [11] present such a lock-based heap algorithm
assuming specialized “cleanup” threads to
overcome deadlocks. Rao et al. [12] suggest to
overcome the drawbacks of [11] using an algorithm
that has both insert and delete-min operations
proceed from the top down. Ayani et.al [13]
improved on their algorithm by suggesting a way to
have consecutive insertions be performed on
opposite sides of the heap. Hunt et al. [14] present
a heap based algorithm that overcomes many of the
limitations of the above schemes, especially the

need to acquire multiple locks along the traversal
path in the heap. It proceeds by locking for a short
duration a variable holding the size of the heap and
a lock on either the first or last element of the heap.
In order to increase parallelism, insertions traverse
the heap bottom-up while deletions proceed
top-down, without introducing deadlocks. Insertions
also employ a left-right technique as in [13] to allow
them to access opposite sides on the heap and
thus minimize interference.

Unfortunately, the empirical evidence shows,
the performance of [14] does not scale beyond a few
tens of concurrent processors. As concurrency
increases, the algorithm's locking of a shared counter
location, introduces a sequential bottleneck that hurts
performance. The root of the tree also becomes a
source of contention and a major problem when the
number of processors is in the hundreds. In summary,
both balanced search trees and heaps suffer from the
typical scalability impediments of centralized structures:
sequential bottlenecks and increased contention. The
solution proposed by lotal et.al [15] is to design
concurrent priority queues based on the highly
distributed SkipList data structures of Pugh [31, 32].

SkipLists are search structures based on
hierarchically ordered linked-lists, with a probabilistic
guarantee of being balanced. The basic idea behind
SkipLists is to keep elements in an ordered list, but have
each record in the list be part of up to a logarithmic
number of sub-lists. These sub-lists play the same role
as the levels of a binary search structure, having twice
the number of items as one goes down from one level to
the next. To search a list of N items, O (log N) level lists
are traversed, and a constant number of items is
traversed per level, making the expected overall
complexity of an Insert or Delete operation on a SkipList
O(logN). Author introduced the SkipQueue, a highly
distributed priority queue based on a simple
modification of Pugh's concurrent SkipList algorithm
[31]. Inserts in the SkipQueue proceed down the levels
as in [31]. For Delete-min, multiple minimal" elements
are to be handed out concurrently. This means that one
must coordinate the requests, with minimal contention
and bottlenecking, even though Delete-mins are
interleaved with Insert operations. The solution was as
follows, keep a specialized delete pointer which points
to the current minimal item in this list. By following the
pointer, each Delete-min operation directly traverses the
lowest level list, until it finds an unmarked item, which it
marks as \deleted." It then proceeds to perform a regular
Delete operation by searching the SkipList for the items
immediately preceding the item deleted at each level of
the list and then redirecting their pointers in order to
remove the deleted node.

Sundell et.al [16] given an efficient and practical
lock-free implementation of a concurrent priority queue
that is suitable for both fully concurrent (large multi-

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

6

(
DDDD

)
Y
e
a
r

20
14

c

processor) systems as well as pre-emptive (multi-
process) systems. Inspired by [15], the algorithm was
based on the randomized Skiplist [28] data structure,
but in contrast to [15] it is lock-free. The algorithm was
based on the sequential Skiplist data structure invented
by Pugh [32]. This structure uses randomization and
has a probabilistic time complexity of O(logN) where N
is the maximum number of elements in the list. The data
structure is basically an ordered list with randomly
distributed short-cuts in order to improve search times,
In order to make the Skiplist construction concurrent
and non-blocking; author used three of the standard
atomic synchronization primitives, Test-And-Set (TAS),
Fetch-And-Add (FAA) and Compare-And-Swap (CAS).
To insert or delete a node from the list we have to
change the respective set of next pointers. These have
to be changed consistently, but not necessary all at

once. The solution was to have additional information on
each node about its deletion (or insertion) status. This
additional information will guide the concurrent
processes that might traverse into one partial deleted or
inserted node. When we have changed all necessary
next pointers, the node is fully deleted or inserted.

• Tree-Based Priority Pools: Huang and Weihl et al.
[18] and Johnson et al.[17] describe concurrent
priority pools: priority queues with relaxed semantics
that do not guarantee linearizability of the delete-min
operations. Their designs were based on a modified
concurrent B+-tree implementation. Johnson
introduces a “delete bin” that accumulates values to
be deleted and thus reduces the load when
performing concurrent delete-min operations.

V. Comparison and Analysis

Data structure Algorithm Merits Demerits

Stack

Systems programming:
Coping with parallelism

Simple and can be expected to
be quite efficient.

Contention and an
inherent sequential

bottleneck.

A scalable lock-free stack
algorithm

Due to elimination technique
there is high degree of

parallelism.

queue

Implementing Lock-Free
queues.

Algorithm no longer needs the
snapshot, only intermediate

state that the queue can be in
is if the tail pointer has not

been updated

Required either an
unaligned compare &

swap or a Motorola like
double-compare and

swap, both of them are not
supported on any

architecture.

Simple, Fast, and Practical
Non-Blocking and Blocking

Concurrent Queue
Algorithms.

The algorithm was simple, fast
and practical .it was the clear

algorithm of choice for
machine that provides a

universal atomic primitive.

Pointers are inserted
using costly CAS

Using elimination to
implement scalable and
lock-free FIFO queues.

1. Scaling technique allows
multiple enqueue and dequeue

operations to complete in
parallel.

2. The concurrent access to
the head and tail of the queue
do not interfere with each other

as long as the queue is non-
empty.

1. The elimination back off
queue is practical only for

very short queues as in
order to keep the correct
FIFO queue semantics,
the enqueue operation
cannot be eliminated

unless all previous
inserted nodes have been

dequeued.

2. scalable in
performance as compare
to previous one but having

high overhead.

Tree

Concurrent manipulation of
binary search trees.

Algorithm never blocked the
search operations

Search tree is not
balanced

Efficient Locking for
Concurrent Operations on

B-trees,

Small number of locks used Expansive locks

A symmetric concurrent b-
tree algorithm

They involved the merging as a
part of deletion.

Expansive locking

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

7

(
DDDD DDDD

)
Y
e
a
r

20
14

c

Priority queue

An efficient algorithm for
concurrent priority queue

heaps

Allows concurrent insertion
and deletion in opposite

direction.

The performance does not
scale beyond a few tens of

concurrent processors.

Skip list-Based Concurrent
Priority Queues

Designed a scalable
concurrent priority queue for
large scale multi-processor.

Algorithm based on
locking approach.

Fast and Lock-Free
Concurrent Priority Queues

for Multithread System.

This was a first lock-free
approach for concurrent

priority queue

 A highly concurrent priority
queue based on the b-link

tree

Avoid the serialization
bottleneck

Needs node to be locked
in order to be rebalance

Linked list

Lock-free linked lists using
compare-and-swap

Reduced interference of
concurrent operations using

backlink nodes

A pragmatic implementation
of non-blocking linked-lists

For making successful
updating of nodes, every node

to be deleted was marked

Difficult to implement

High performance dynamic
lock-free hash tables and

list-based sets.

Efficient with memory
management techniques

Poor in performance.

VI.

Conclusion

This paper reviews the different data structures
and the concurrency control techniques with respect to
different data structures (tree, queue, priority queue).
The algorithms are categorized on the concurrency
control techniques like blocking and non-blocking.
Former based on locks and later one can be lock-free,
wait-free or obstruction free. In the last we can see that
lock free approach outperforms over locking based
approach.

References Références Referencias

1. R. K. Treiber, “Systems programming: Coping with
parallelism”, “RJ 5118, Almaden Research Center,
and ‘‘April 1986.

2. M. Michael and M. Scott. “Nonblocking algorithms
and preemption-safe locking on multiprogrammed
shared - memory multiprocessors.” Journal of
Parallel and Distributed Computing, 51(1):
1–26, 1998.

3. D. Hendler, N. Shavit, and L. Yerushalmi. “A
scalable lock-free stack algorithm.” Technical
Report TR-2004-128, Sun Microsystems Labo-
ratories, 2004.

4. J. D. Valois. “Implementing Lock-Free queues.” In
Seventh International Conference on Parallel and
Distributed Computing Systems, Las Vegas, NV,
October 1994.

5. M. M. Michael and M. L. Scott. “Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent
Queue Algorithms.” 15th ACM Symp. On Principles
of Distributed Computing (PODC), May 1996.
pp.267 – 275.

6. Mark Moir, Daniel Nussbaum, Ori Shalev, Nir Shavit:
“Using elimination to implement scalable and
lock-free FIFO queues. “ SPAA 2005.

7. H. Kung and P. Lehman. “Concurrent manipulation
of binary search trees.” ACM Transactions on
Programming Languages and Systems, 5:354–382,
September 1980.

8. P. Lehman and S. Yao. ”Efficient Locking for
Concurrent Operations on B-trees”, ACM Trans.
Database Systems, vol. 6,no. 4, 1981.

9. Y. Sagiv. “Concurrent operations on b-trees with
overtaking.” Journal of Computer and System
Sciences, 33(2):275–296, October 1986.

10. V. Lanin and D. Shasha. “A symmetric concurrent
b-tree algorithm.” In Proceedings of the Fall Joint
Computer Conference 1986, pages 380–389. IEEE
Computer Society Press, November 1986.

11. J. Biswas and J. Browne. “Simultaneous update of
priority structures.” In Proceedings of the 1987
International Conference on Parallel Processing,
pages 124–131, August 1987.

12. V. Rao and V. Kumar. “Concurrent access of priority
queues.” IEEE Transactions on Computers,
37:1657–1665, December 1988.

13. R. Ayani. “LR-algorithm: concurrent operations on
priority queues.” In Proceedings of the 2nd IEEE
Symposium on Parallel and Distributed Processing,
pages 22–25, 1991.

14. G. Hunt, M. Michael, S. Parthasarathy, and M. Scott.
“An efficient algorithm for concurrent priority queue
heaps.” Information Processing Letters, 60(3):
151–157, November 1996.

15. LOTAN, N. SHAVIT. “Skiplist-Based Concurrent
Priority Queues”, International Parallel and
Distributed Processing Symposium, 2000.

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

8

(
DDDD

)
Y
e
a
r

20
14

c

16. H.Sundell and P.tsigas. “Fast and Lock-Free
Concurrent Priority Queues for Multithread System.”

17. T. Johnson. “A highly concurrent priority queue
based on the b-link tree.” Technical Report 91-007,
University of Florida, August 1991.

18. Q. Huang and W. Weihl”. An evaluation of
concurrent priority queue algorithms. “In IEEE
Parallel and Distributed Computing Systems, pages
518–525, 1991.

19. J. D. Valois. “Lock-free linked lists using compare-
and-swap.” In Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing,
pages 214–222, 1995.

20. T. L. Harris. “A pragmatic implementation of non-
blocking linked-lists.” In Proceedings of the 15th
International Symposium on Distributed Computing,
pages 300–314, 2001.

21. M. M. Michael. “High performance dynamic lock-
free hash tables and list-based sets.” In
Proceedings of the 14th annual ACM Symposium
on Parallel Algorithms and Architectures, pages
73–82, 2002.

22. M. Greenwald. “Non-Blocking Synchronization and
System Design.” PhD thesis, Stanford University
Technical Report STAN-CS-TR-99-1624, Palo Alto,
A, 8 1999.

23. N. Shavit and D. Touitou. “Elimination trees and the
construction of pools and stacks.” Theory of
Computing Systems, 30:645–670, 1997.

24. M. Herlihy. “A methodology for implementing highly
concurrent data objects.” ACM Transactions on
Programming Languages and Systems, 15(5):
745–770, 1993.

25. M. Herlihy and J. Wing. “Linearizability: a
Correctness Condition for Concurrent Objects.”
ACM Transactions on Programming Languages and
Systems, 12(3): 463–492, 1990.

26. H. Sundell and P. Tsigas. NOBLE: A Non-Blocking
Inter-Process Communication Library. In
Proceedings of the 6th Workshop on Languages,
Compilers and Run-time Systems for Scalable
Computers, 2002.

27. P. Tsigas and Y. Zhang. Integrating Non-blocking
Synchronization in Parallel Applications:
Performance Advantages and Methodologies. In
Proceedings of the 3rd ACM Workshop on Software
and Performance, pages 55–67. ACM Press, 2002.

28. M. Herlihy. “A methodology for implementing highly
concurrent data objects.” ACM Transactions on
Programming Languages and Systems, 15(5):
745–770, November 1993.

29. J. Mellor-Crummey and M. Scott. “Algorithms for
scalable synchronization on shared memory
multiprocessors.” ACM Transactions on Computer
Systems, 9(1):21–65, 1991.

30. J. Turek, D. Shasha, and S. Prakash. “Locking
without Blocking: Making Lock Based concurrent

Data Structure Algorithms Nonblocking.” In
Proceedings of the 11th ACM SIGACT-SIGMOD-
SIGARTSymposium on Principles of Database
Systems, pages 212–222, 1992

31. W. Pugh. “Concurrent Maintenance of Skip Lists.”
Technical Report, Institute for Advanced Computer
Studies, Department of Computer Science,
University of Maryland, College Park, CS-TR-
2222.1, 1989.

32. W. Pugh. Skip Lists: “A Probabilistic Alternative to
Balanced Trees.” In Communications of the ACM,
33(6):668{676, June 1990.

Concurrent Access Algorithms for Different Data Structures: A Research Review

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
III

V
er
sio

n
I

9

(
DDDD DDDD

)
Y
e
a
r

20
14

c

	Concurrent Access Algorithms for Different Data Structures: A Research Review
	Authors
	Keywords
	I. Introduction
	II. Data Structures
	a) Linear Data Structures
	b) Non-Linear Data Structure

	III. Concurrency Control
	a) Blocking
	b) Non-Blocking

	IV. Literature Review
	a) Stack Data Structu
	b) Queue Data Structure
	c) Linked List Data Structure
	d) Tree Data Structure
	e) Priority Queue Data Structure

	VI.Conclusion
	References Références Referencias

