Towards Optimized K Means Clustering using Nature-inspired Algorithms for Software Bug Prediction
Keywords:
data clustering, K-means algorithm, Nature-inspired algorithms, software bug detection, coral reefs
Abstract
In today s software development environment the necessity for providing quality software products has undoubtedly remained the largest difficulty As a result early software bug prediction in the development phase is critical for lowering maintenance costs and improving overall software performance Clustering is a well-known unsupervised method for data classification and finding related patterns hidden in datasets
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2023-05-20
Issue
Section
License
Copyright (c) 2023 Authors and Global Journals Private Limited
This work is licensed under a Creative Commons Attribution 4.0 International License.