Signed multiplication is a complex arithmetic operation, which is reflected in its relatively high signal propagation delay, high power dissipation, and large area requirement. High reliability applications such as Cryptography, Residue Number System (RNS) and Digital Signal Processing (DSP)’s effective performance is mainly depend on its arithmetic circuit's performance. Trend of using Residue Number System (RNS) instead of Constrain over-whelming Binary representation is promising technique in VLSI Systems and Multiplier is the basic building block of such systems. In this paper we have considered signed Modified Baugh Wooley Multiplier and Modified Booth Encoding (MBE) Multiplier logic for analysis and synthesized on best suited application platform. Analysis has taken account of Delay, Number of Logic Element requirements; Number of Signal Transition for particular sample input and its Power Consumption were analyzed for both Modified Baugh Wooley Multiplier and Modified Booth Encoding Multiplier. Analysis of Multiplier is described in Verilog HDL and Simulated using two different simulators namely Xilinx ISIM and Altera Quartus II. Then for comparative study, both multipliers are synthesized with Xilinx Virtex 7 XCV2000T-2FLG1925 and Altera Cyclone II EP2C35F672C6 and same parameter as discussed above are also evaluated. Booth Recoding provides overall advent of 9.691% in terms of area and approximately 43 % in terms of Delay compared to Modified Baugh Wooley Multiplier implemented using FPGA Technology.

How to Cite
N, ELANGO S, SAMPATH P, GAYATHRI K, Pradeep. Investigating the VLSI Characterization of Parallel Signed Multipliers for RNS Applications Using FPGAs. Global Journal of Computer Science and Technology, [S.l.], mar. 2015. ISSN 0975-4172. Available at: <https://computerresearch.org/index.php/computer/article/view/1124>. Date accessed: 26 jan. 2021.