
				Improving the Read Performance of the Distributed File System through Anticipated Parallel Processing
			

				Improving the Read Performance of the Distributed File System through Anticipated Parallel Processing
			

Table of contents
	1. Introduction
	2. Year ()
	3. 2015
	4. B
	5. II.
	6. Relatedwork
	7. III.
	8. Proposed Algorithm based on Anticipated Parallel Processing
	9. a) Anticipated Parallel Execution
	10. b) Disadvantages of Speculation-based algorithm
	11. c) Proposed Algorithm
	12. a) Assumptions
	13. b) Mathematical Model
	14. c) Simulation Experiments
	15. Conclusion

	Appendix A §	Appendix A.1 §

	Appendix B §

1. Introduction
ot of data (text, images, video and audio) is getting gen-erated due to the extensive use of social media applications. This phenomena is referred as Big Data in the literature.The availability of smart phones which support many at-tractive applications facilitate the users to upload the mul-timedia data into the web in a exible manner. The main problem here is the availability of scalable storage solutions which provide required storage capacity and efficient read and write facilities. Distributed File systems (DFSs) have been emerged as the scalable storage facility for storing Big Data and for accessing them in an efficient manner. Many cloud computing systems use DFS as the main storage component.
The Big Data applications deployed in the cloud computing environment more frequently perform read operations and less frequently carry out write operations. Hence, improving the performance of the read operations in a Big Data environment has become one of the important research is-sues. So, for the DFS which is used for storing and accessing Big Data, it is important that it carries out the read access in a faster manner so that Big Data application execution time can be reduced.
The DFS uses disk as the main storage device and data transfer rate of disk is very less in comparison with that of the dynamic or static random access memories used in the computer systems. To reduce the input/output (I/O) access time, many client side caching techniques have been proposed in the literature. These techniques allow the client node to download the requested Files from the server and store the same in the client side cache so that further read re-quests issued by the applications running in the client nodes will be satis read by reading the content from the local cache (client side cache). To avoid stale data problems in the client side caching techniques one of the following methods will be used: (i) Cache synchronization or cache invalidation pro-tocol (ii) Checking up with the server whether the data in the client side cache is valid or stale. If the data available in the cache is stale then the data has to be fetched from the server's disk.
In the literature, a speculation-based technique has been proposed for improving the performance of read access in the DFS [6]. In this technique, the client application reads the data from the local cache and proceed with its execution (speculative execution). Simultaneously, the server systemis also contacted to check whether the data in the local cache is stale or valid by comparing the time stamp values of the cached copy and the copy available in the sever's disk. If the data in the local cache is found to be valid, then the speculative execution is allowed to continue. If the data in the local cache is found to be stale, then the data is read from the server's disk and the speculative execution will be rolled back.
In this paper, we propose anticipated parallel processing-based algorithm which carries out executions by considering the local cache of the node (LN) where the client application program is getting

Figure 1. Global) 2015 B
2015[image: Journal of C omp uter S cience and T echnology Volume XV Issue II Version I Year (Improving the Performance of the Distributed file System Through Anticipated Parallel Processing]

Figure 2.) 2015 B
2015[image: F2 and then both the algorithm steps II and III are executed in parallel.) Global Journal of C omp uter S cience and T echnology Volume XV Issue II Version I Year (Improving the Performance of the Distributed file System Through Anticipated Parallel Processing]

Figure 3.
[image: Block Read Access Time (with anticipated parallel processing) = lc* (Main memory access time + Time stamp collection time) + nc * (Main memory access time + Time stamp collection time + Block transfer communication time + Remote Main memory access time) + (1-lc -nc) * (Time stamp collection time + Main memory access time + Remote Main memory access time + Meta Data Collection Time + Block access time for Disk + Block transfer communication time + Main memory access time). The ABRAT for anticipated parallel processing-based approach is computed as (20.26 -20.01c -16.13c1)ms (Formula 2).]

Figure 4. Figure 1 :) 2015 B
12015[image: Figure 1: Remote Cache Hit Ratio Vs Average Read Access Time (Local cache hit ratio value is 0.3)]

Figure 5. Figure 2 :
2[image: Figure 2 : Remote Cache Hit Ratio Vs Average Read Access Time (Local cache hit ratio value is 0.4)]

Figure 6. Figure 3 :
3[image: Figure 3 : Remote Cache Hit Ratio Vs Average Read Access Time (Local cache hit ratio value is 0.5)]

Figure 7. Figure 4 :
4[image: Figure 4: Remote Cache Hit Ratio Vs Average Read Access Time (Local cache hit ratio value is 0.6)]

Figure 8. Figure 5 :) 2015 BFigure 6 :Figure 7 :Figure 8 :Figure 9 :
520156789[image: Figure 5 : Remote Cache Hit Ratio Vs Average Read Access Time (Local cache hit ratio value is 0.7)]

Figure 9.
[image:]

Figure 10.
[image:]

Figure 11.
[image:]

			1

			2

		

			
			
		
Notes
1 © 2015 Global Journals Inc. (US)

2 © 2015 Global Journals Inc. (US) 1

2. Year ()
 Up: Home Previous: 1. Introduction Next: 3. 2015

 Up: Home Previous: 1. Introduction Next: 3. 2015

3. 2015
 Up: Home Previous: 2. Year () Next: 4. B

 Up: Home Previous: 2. Year () Next: 4. B

4. B
 Up: Home Previous: 3. 2015 Next: 5. II.
Improving the Performance of the Distributed file System Through Anticipated Parallel Processing executed and also the local cache of the node (NN) which is placed near to LN (where the same data is available). Based on the time stamp value available in the server for the data, the cache content of LN or NN will be considered. If the data available in LN and NN are stalethen the data will be read from the server's disk. We have evaluated the performance the proposed algorithm through mathematical analysis and simulation experiments. The re-sults indicate that our proposed algorithm performs better than the earlier speculationbased algorithm proposed in the literature.
This paper is organized as follows. In the next section, we describe the techniques discussed in the literature for im-proving the performance of the DFS. In section 3, we discuss our proposed approach in detail. In section 4, we have done the detailed performance evaluation of the algorithms using mathematical analysis and simulation modeling. Section 5 concludes the paper.

 Up: Home Previous: 3. 2015 Next: 5. II.

5. II.
 Up: Home Previous: 4. B Next: 6. Relatedwork

 Up: Home Previous: 4. B Next: 6. Relatedwork

6. Relatedwork
 Up: Home Previous: 5. II. Next: 7. III.
In this section, we discuss First we describe the techniques discussed in the literature for improving the performance of the DFS.
Many client-side caching techniques have been used to im-prove the performance of distributed File systems. A cooper-ative caching technique is discussed in the paper [2]. In this type of technique, the server maintains a directory which stores the details of File blocks stored in each and every local caches available in client nodes. Whenever a client applica-tion program issues read request for a block, First the local cache is verified and then the cache directory maintained in the server is verified to see whether the requested File block is available or not. If the File block is not available in the local cache and in any of the caches maintained in the client nodes then it will be read from server's disk where the DFS is deployed. This technique is suffering from the problem known as single point of failure.
In order to eliminate the single point of failure, researchers have come out with a technique known as "Decentralized Caching Technique" which was proposed in [8]. The authors proposed a hint based approach in which the cache directory of the local cache maintains hints regarding in which local cache of the client nodes the File block probably be found. This technique proposed the meta data in the form of hints to be distributed to client nodes and hence the single point of failure can be eliminated.
A new type of caching technique called collective caching was discussed in [4]. If the subtasks of a client application runs in multiple client nodes then the caches available in these client nodes may be logically combined to act as a single cache so that all the subtasks can read the File blocks from this uni_ed cache provided these blocks are available there.
In [7] an aggressive proactive technique was proposed for the effective pre fetching of _le blocks based on hints. In [3], locality aware cooperative caching was proposed.
The Hadoop DFS (HDFS) [9] is a open-source project and it is a cluster-based File system. The HDFS is an attractive File system and provides scalable storage solutions for Big Data applications.
In [6], a speculation-based method was proposed to improve the performance of the DFS. This technique uses only the local cache for the speculative execution purpose.

 Up: Home Previous: 5. II. Next: 7. III.

7. III.
 Up: Home Previous: 6. Relatedwork Next: 8. Proposed Algorithm based on Anticipated Parallel Processing

 Up: Home Previous: 6. Relatedwork Next: 8. Proposed Algorithm based on Anticipated Parallel Processing

8. Proposed Algorithm based on Anticipated Parallel Processing
 Up: Home Previous: 7. III. Next: 9. a) Anticipated Parallel Execution
In this section we discuss regarding anticipated parallel ex-ecution, disadvantages of speculation-based algorithm and then the proposed algorithm.

 Up: Home Previous: 7. III. Next: 9. a) Anticipated Parallel Execution

9. a) Anticipated Parallel Execution
 Up: Home Previous: 8. Proposed Algorithm based on Anticipated Parallel Processing Next: 10. b) Disadvantages of Speculation-based algorithm
The main idea behind anticipated parallel execution is to do some task before it is known whether that task will be required at all. Later we come to know that whether the task is required or not by checking various conditions. If the task is required then the effect of the task execution is used and the results produced by the task are considered. If the task is not required then the effect of the task execution is undone and the results produced by the task are not utilized. This type of task execution will reduce the waiting time for mmany cases and hence the performance can be improved.
Anticipated parallel execution technique is followed in mod-ern pipelined processors particularly for the efficient han-dling of conditional branch instructions. In this type of pro-cessors, the conditional branch instructions are allowed to go through the various stages of the pipeline. Here the assumption is that the condition may not satisfied and hence the branch will not take place. Whether the condition is satisfied or not for an instruction is known at the execution stage of the pipeline. If the condition is not satisfied, the instruction executions continue in the pipeline. If the con-dition is satisfied then the pipeline is drained and then the instruction will be fetched from the target address (branch address) [1]. Anticipated parallel executions are used in op-timization phase of the compilation process [5].

 Up: Home Previous: 8. Proposed Algorithm based on Anticipated Parallel Processing Next: 10. b) Disadvantages of Speculation-based algorithm

10. b) Disadvantages of Speculation-based algorithm
 Up: Home Previous: 9. a) Anticipated Parallel Execution Next: 11. c) Proposed Algorithm
In the literature a speculation-based method has been pro-posed for improving the performance of read operations [6]. In this paper, the authors assumed that caches are main-tained in the client systems and the server will be contacted to check whether the content in the local (client side cache) is stale or valid by checking the time stamp of the cached copy and the copy available in the server's disk. Whenevera client application program requests for a File and if the File is available in the local cache then one speculative execution will be started which reads the content from the local cache and proceed its execution. Meanwhile the server system is contacted to know whether the cached copy of theFile is stale or valid. If the cached copy of the File is valid then the speculative execution will be allowed to continue. If the cached copy of the File is stale then the speculative execution will be rolled back and then the file content is read from the server's disk and then the execution will continue. In this algorithm, the client program checks only the local cache and if the content is not available there the it accesses the content from the server's disk. Note that, the same content may be available in other client nodes connected in the DFS environment. This speculation-based algorithm does consider the availability of data in other client nodes. So, there is a scope of proposing an improved read algorithm by considering the local caches present in other systems.

 Up: Home Previous: 9. a) Anticipated Parallel Execution Next: 11. c) Proposed Algorithm

11. c) Proposed Algorithm
 Up: Home Previous: 10. b) Disadvantages of Speculation-based algorithm Next: 12. a) Assumptions
In this subsection, we discuss _rst regarding the assumptions of the caching system maintained in the DFS. Next, we describe the three parts of the proposed algorithm and then the proposed algorithm.
i. Assumptions
We have considered a cluster-based DFS to propose our algorithm. In the DFS, we have assumed that one name node (name sever system) and two or more data nodes are present. The purpose of the name node is to store the meta data (global directory -File attributes and other details). The data nodes are used for storing the files and executing user (client) application programs. The name node and data nodes are connected through local area network. All the data nodes are maintaining their own local caches and cache operations are managed by a cache manager module deployed in the data nodes. The cache managers maintain cache directory (CD) in which the information regarding which Files are stored in the local cache is available. In the CD of a data node, the address of the nearest data node is also stored. Here, we have considered only the File level caching (entire File will be downloaded from the server's disk and stored in the cache). We have assumed that caching is done only during read access and write operations will not initiate any cache operation. We have also assumed that the no cache synchronization or invalidation protocol is followed in order to avoid communication delay. Each client program whenever it reads the content form the cache, it has to verify with the name node whether the content read from the cache is valid or stale. We have also assumed that three copies of the same _le is kept in three different data nodes in order to support the reliability feature.
ii. Three parts of the algorithm Our algorithm consists of three parts. The first part describes the steps to be followed for the main thread of execution of the read procedure of the DFS. The second part describes the steps to be followed by the anticipated execution (AE1) and the third part describes the steps to be followed by the anticipated execution (AE2).
/ We have analyzed the performance of the algorithms through mathematical and simulation modeling. In this section, we discuss first regarding the assumptions. Next, we discuss regarding performance evaluation through mathematical model. Finally, we discuss regarding the results of the simulation experiments.

 Up: Home Previous: 10. b) Disadvantages of Speculation-based algorithm Next: 12. a) Assumptions

12. a) Assumptions
 Up: Home Previous: 11. c) Proposed Algorithm Next: 13. b) Mathematical Model
We have made the following assumptions by considering various factors related to main memory, disk and local area network. (i) Block size is 4 KB. (ii) All data and name nodes are connected in a network. (iii) Average communication delay is 4 ms. (iv) Transferring meta data from name node to requested data node is 0.125 ms (v) Average block access time for disk is 12 ms (vi) Average block access time formain memory is 0.005 ms (vii) Local cache hit ratio is lc and remote cache hit ratio is nc.

 Up: Home Previous: 11. c) Proposed Algorithm Next: 13. b) Mathematical Model

13. b) Mathematical Model
 Up: Home Previous: 12. a) Assumptions Next: 14. c) Simulation Experiments
Based on the assumptions discussed in the above subsection we calculate the average access time for the speculation and anticipated parallel processingbased algorithms. We call average block read access time as ABRAT. We have calculated the time required to access a file block from the remote data node as 4.01 ms.
Average Block Read Access Time (with speculation) = lc * (Main memory access time + Time stamp collection time) + (1-lc) * (Main memory access time + Time stamp collection time + Block access time for Disk + Block transfer communication time + Main memory access time). If we apply the above equation, ABRAT for speculation-based approach is calculated as (16.26 -16.13 lc)ms. (Formula 1)
Note that, we have not considered overhead involved in starting the the speculative execution.
Average We have Fixed the lc value as 0.3 and measured the values which is depicted in Fig. 1. For the nc values 0.2 and above, the proposed anticipatedparallel processing based algorithm (APA) performs better than the speculation-based algorithm (SPA). In Fig. 2. we have _xed lc value as 0.4 and varied the nc values from 01. to 0.6. We can observe the similar trend in both the Figures (Fig. 1 and Fig. 2). We have Fixed lc value as 0.5 and varied nc values from 0.1 to 0.5 and observed the performance of the algorithms. For the nc values 0.11 and above the proposed anticipated parallel processing-based algorithm performs better than the speculation-based algorithm which is depicted in Fig. 3. We can observe similar trends in Fig. 4 and Fig. 5.

 Up: Home Previous: 12. a) Assumptions Next: 14. c) Simulation Experiments

14. c) Simulation Experiments
 Up: Home Previous: 13. b) Mathematical Model Next: 15. Conclusion
We simulated both speculation-and anticipated parallel processing based algorithms. We conducted the simulation experiments by Fixing the number of Files present in the data node and by varying the number of cache blocks of local and remote caches and number of blocks in the File.
The performance of the proposed algorithm (APA) and the speculation-based algorithm proposed in the literature (SP) are shown in Figures 6 to 10. We have Fixed the number of Files present in the DFS as 50 and capacity of LC and NC as 100 blocks and have varied number of blocks present in the Files from 25 to 100 and conducted simulation experiments. The performance is shown in Fig. 6. We observe that APA requires less access time than SP for all cases. Next, we have Fixed the number of Files as 50 and capacity of LC and NC as 200 blocks and varied number of blocks present in the Files from 25 to 100. The observed performance is shown in Fig. 6. We observe that APA performs better than SP. Similar trends can be observed in Fig. 8, Fig. 9 and Fig. 10.
Both the results of evaluation through mathematical and simulation techniques indicate that the proposed anticipated V.

 Up: Home Previous: 13. b) Mathematical Model Next: 15. Conclusion

15. Conclusion
 Up: Home Previous: 14. c) Simulation Experiments Next: Appendix A §
In this paper, we have proposed an anticipated parallel processing based read algorithm for improving the performance of the DFS. We have also carried out performance analysis for the speculation-based read and proposed algorithms using mathematical analysis and by conducting simulation experiments. The results of our analysis indicate that our proposed algorithm requires less read access time than the speculation based read algorithm proposed in the literature.

 Up: Home Previous: 14. c) Simulation Experiments Next: Appendix A §

Appendix A §
 Up: Home Next: Appendix B §
Appendix A §

Appendix A.1 §

			
 Up: Home Next: Appendix B §

Appendix B §
 Up: Home Previous: Appendix A §
Appendix B §

					
	
		Proving safety of speculative load instructions at compiletime
		
			D Bernstein
		,
		
			M Rodeh
		,
		
			M Sagiv
		.
	
	
		Lecture Notes in Computer Science
		B. Krieg-Br ~ Aijckner (editor)
		1992. Springer. 92 p. .
	

	
	
		Cooperative caching: Using remote client memory to improve _le system performance
		
			M D Dahlin
		,
		
			R Y Wang
		,
		
			T E Anderson
		,
		
			D A Patterson
		.
	
	
		Proceedings of the 1st USENIX Conference on Operating Systems Design and Implementation, OSDI '94,
				 (the 1st USENIX Conference on Operating Systems Design and Implementation, OSDI '94Berkeley, CA, USA
)
		1994. USENIX Association.
	

	
	
		A localityaware cooperative cache management protocol to improve network _le system performance
		
			S Jiang
		,
		
			F Petrini
		,
		
			X Ding
		,
		
			X Zhang
		.
	
	
		Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on,
				2006. p. .
	

	
	
		Collective caching: application-aware client-side _le caching
		
			W Liao
		,
		
			K Coloma
		,
		
			A Choudhary
		,
		
			L Ward
		,
		
			E Russell
		,
		
			S Tideman
		.
	
	
		High Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE International Symposium on,
				2005. IEEE.
	

			
 Up: Home Previous: Appendix A §

Information about this book

			Title statement

				Improving the Read Performance of the Distributed File System through Anticipated Parallel Processing
			
			Publication

					Publisher
	Global Journals Organisation

					Availability
	
This is an open access work licensed under a Creative Commons Attribution 4.0 International license. Please email us for details and permissions.

				Place of publication
	Cambridge, United States
	Date
	15 January 2015

			Source

				
					
					
					 3D0110DC96AE2FCAA0BD1BF4EEB6A45C.
				Nathan Ragu, B. Rangaswamy, Dr. N. Geethanjali,
Sri Krishnadevaraya University. Global Journal of Computer Science and TechnologyGJCST 0975-4172. 0975-4350. 10.34257/gjcst. Cambridge, United States: Global Journals Organisation. 15 (2) 19 25.

			
		
			
				
					By Softinator Dynamics Pvt. Ltd.
					
				
			

		
OPS/toc.html
Contents

		2. Year ()

		3. 2015

		4. B

		5. II.

		6. Relatedwork

		7. III.

		8. Proposed Algorithm based on Anticipated Parallel Processing

		9. a) Anticipated Parallel Execution

		10. b) Disadvantages of Speculation-based algorithm

		11. c) Proposed Algorithm

		12. a) Assumptions

		13. b) Mathematical Model

		14. c) Simulation Experiments

		15. Conclusion

		Appendix A ยง

		Appendix B ยง

		[About this book]

Guide

		[Title page]

		[The book]

		[About this book]

OPS/media/resource1.png
// AssOCIATION \\
OF RESEARCH |
SOCIETY, USA

OPS/media/resource11.png
Average Access Time in Milli Seconds

Number of Blocks VS Average Access Time

16

15 4 No.of Files=50
14

18 +

12

11 + —4—SP
10 ~—APA
5 /

25 50 75 100

Number of Blocks

OPS/media/resource10.png
£
Fl
E
£
]
<
P
g
g
2

12 4

11
10

Number of Blocks VS Average Access Time

No.of Files=50
Lc=400

25 50 75 100
Number of Blocks.

OPS/media/resource7.png
3
H
g

&

Average Access Time in Mil

Number of Blocks VS Average Access Time

16.5

16

155

15

145

14

e

25 50 75 100

Number of Blocks

No.of Files=50

OPS/media/resource6.png
Average AccessTime

Remote Cache Hit Ratio VS Average Access Time

- - - Local Cache.
. Hit=0.7
——sen
—a-aea
01 0z o3

Remote Cache Hit Ratio

OPS/media/resource9.png
Number of Blocks VS Average Access Time

. 16
3 -

H No.of Files=50
g 15 00

§ Ge=3000

s B

: ., ——sP
[+ —m-APA
g 1

E

S 10

g 25 50 75 100

2

Number of Blocks

OPS/media/resource8.png
&
s
£
£
b
S
A
g
§
g
<

Number of Blocks VS Average Access Time

16
155
15
145
14
135
13
125
12

50 75

Number of Blocks

100

No.of Files=50

OPS/media/resource3.png
Average AccessTime

12

10

Remote Cache Hit Ratio VS Average Access Time

o1

02

03 0s
Remote Cache Hit Ratio

os

o0s

Local Cache.
Hit=0.4

——sPa
——arn

OPS/media/resource2.png
Average AccessTime

Remote Cache Hit Ratio VS Average Access Time

o1 0z 03 0s os 08 07
Remote Cache Hit Ratio

Local Cache.
Hit=03

——sPa
——arn

OPS/media/resource5.png
Remote Cache Hit Ratio VS Average Access Time

“ ~ ~

Average AccessTime

01 02 03 04
Remote Cache Hit Ratio

Local Cache.
Hit=0.6

——sPa
——arn

OPS/media/resource4.png
Average AccessTime
chmwsuaN®o

10

Remote Cache Hit Ratio VS Average Access Time

o1

02

03
Remote Cache Hit Ratio

04

o5

Local Cache.
Hit=0.5

——sPa
——arn

