
				Design of a Five Stage Pipeline CPU with Interruption System
			

				Design of a Five Stage Pipeline CPU with Interruption System
			

Table of contents
	1. Design of a Five Stage Pipeline CPU with Interruption System
	2. Keywords
	3. 64-bit CPU chip manufacturers dominate the market
	4. Higher bus speeds
	5. Efficient pipelining
	6. Control hazards (branch hazards) Branching
	7. Short cycle time
	8. Load/Store Structure
	9. Year ()
	10. No micro-code technology
	11. Huge register file
	12. Harvard bus architecture
	13. Delayed branch
	14. The chapters are arranged as follows
	15. II. Development Platform and mips Architecture
	16. a) Technology for CPU hardware design and implementation i. Hardware description language
	17. Global Journal of C omp uter S cience and T echnology
	18. Year ()
	19. Global Journal of C omp uter S cience and T echnology
	20. Execution (EX) Stage
	21. b) Design of each stage of the pipeline
	22. Module division
	23. Logic implementation
	24. Module division
	25. Logic implementation
	26. Module division
	27. Logic implementation
	28. Module division
	29. ? data hazards ? structural hazards ? control hazards (branching hazards)
	30. i. Data hazard Data hazard
	31. ii. Control hazard Control hazard
	32. Solution methods in this paper
	33. ç»?"?????
	34. IV. Design of the Interrupt and Exceptional Circuit
	35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception
	36. Year ()
	37. . Exception and interrupt handling in MIPS Interrupts
	38. Exceptions
	39. b) Pipeline CPU precise exception and interrupt processing circuit
	40. . Types of exception and interrupt and associated registers
	41. Table 4-1 : MIPS exception and interrupt registers
	42. V. CPU Verification

	Appendix A §	Appendix A.1 Acknowledgements

	Appendix B §	Appendix B.1 §

	Appendix C §

1. Design of a Five Stage Pipeline CPU with Interruption System
Abdulraqeb Abdullah Saeed Abdo ? & Professor. Liu Yijun ?
Abstract-A central processing unit (CPU), also referred to as a central processor unit, is the hardware within a computer that carries out the instructions of a computer program by performing the basic arithmetical, logical, and input/output operations of the system. The term has been in use in the computer industry at least since the early 1960s.The form, design, and implementation of CPUs have changed over the course of their history, but their fundamental operation remains much the same. A computer can have more than one CPU; this is called multiprocessing. All modern CPUs are microprocessors, meaning contained on a single chip. Some integrated circuits (ICs) can contain multiple CPUs on a single chip; those ICs are called multi-core processors. An IC containing a CPU can also contain peripheral devices, and other components of a computer system; this is called a system on a chip (SoC).Two typical components of a CPU are the arithmetic logic unit (ALU), which performs arithmetic and logical operations, and the control unit (CU), which extracts instructions from memory and decodes and executes them, calling on the ALU when necessary. Not all computational systems rely on a central processing unit. An array processor or vector processor has multiple parallel computing elements, with no one unit considered the "center". In the distributed computing model, problems are solved by a distributed interconnected set of processors. In this paper, firstly I introduce the development of CPU and the background of this paper. On the foundation of that I explicitly introduce the architecture of RISC CPU and MIPS CPU which based on RISC architecture, paving the way for the design of my paper. And then I discuss the design of a five stage pipeline CPU based on MIPS instruction. The CPU in this paper mainly includes pipeline module, control module, interruption module and RAM\ROM module. Using EDA verification software Modelsim to verify the design on functional level and gate level. Finally I download the design to a development-board based on Altera Cyclone4 FPGA. The result of the verification shows that all functions can be achieved. PU is one of the main devices of a computer. Its main function is to explain computer's instruction and deal with the data of software. The programmable ability of computer generally means to program CPU. Central process unit, inner memory and input/output device are three core components of modern computer. Before 1970s, CPU is composed of several individual units. Later the CPU manufactured by semiconductor was developed. The complex circuits of a microprocessor can be made as a tiny unit with powerful function.

Figure 1. Figure 1 - 1 :
11[image: Figure 1-1 : Intel Phenom Quad-Core Moore's Law makes us can expect the general situation in the future development of the CPU. Undoubtedly, high performance, low power]

Figure 2. Figure 1 - 2 :
12[image: Figure 1-2 : Moore's Law and the development of IC integration]

Figure 3. Figure 2 - 1 :
21[image: Figure 2-1 : an example of Verilog HDL hierarchy iii. Comparison with control-flow languagesIt is certainly possible to represent hardware semantics using traditional programming languages, which operate on control flow semantics as opposed to data flow, such as C++, although to function as such, programs must be augmented with extensive and unwieldy class libraries. Primarily, however, software programming languages do not include any capability for explicitly expressing time, and this is why they cannot function as hardware description languages. Before the]

Figure 4. Figure 2 - 2 :
22[image: Figure 2-2 : Modelsim simulation structure c) FPGA design and verificationField-programmable gate array (FPGA) is a device that has numerous gate (switch) arrays and can be programmed on-board through dedicated Joint Test Action Group (JTAG) or on-board devices or using remote system through Peripheral Component Interconnect Express (PCIe), Ethernet, etc. FPGAs are based on static random-access memory (SRAM). The contents of the memory of an FPGA erase once the power is turned off. Usually, FPGAs can be programmed several thousands of times without the device getting faulty.Fig. 2-3 shows the architecture of an FPGA. It includes logic blocks, input/output (I/O) cells, phaselocked loops/delay-locked loops (PLLs/DLLs), block RAM and interconnecting matrix. Nowadays, FPGAs are also coming up with several hard intellectual property (IP) blocks of PCIe, Ethernet, Rocket I/O, PHYs for DDR3 interfaces and processor cores (for example, PowerPC in Xilinx Virtex-5 FPGA and ARM cores in both Xilinx and Altera series FPGAs).To level up with the new technology, both Xilinx and Altera have come up with new series of FPGAs (Virtex 7 from Xilinx and Stratix-V from Altera), which are manufactured with TSMC's 28nm silicon technology. These FPGAs focus on a high speed with low power consumption using various parameters and bringing]

Figure 5.
[image: 3. A concept-level block diagram depicting the major internal peripherals/IPs of the FPGA 4. FPGA vendor, family, speed grade, package, core voltage, supported I/O levels, commercial/industrial type 5. List of blocks that will be used as IPs. Mention clearly what's available for free with the vendorprovided IPs, hard IPs available within the FPGA and paid licensed IPs to be used 6. Type of processor interfaces used (soft processor or external processor interfaces) 7. Type of memory interfaces used 8. A section about the timing diagram of the major peripheral interfaces such as the processor interface and flash interface. 9. Type of FPGA configurations to be used 10. Reset and clock interface planned 11. A brief summary of the estimated resources required for implementation of the logic and I/O pins to be used 12. HDL (VHDL, Verilog, 'C' or mixed) used for RTL coding, tools and version to be used for synthesis, implementation and simulation To calculate the approximate resources required, go through the IP datasheets for the resources used for each IP, and also calculate the resources used by custom RTL. There is no rule of thumb for calculating resources at this level. These can be calculated approximately based on experience, reviews or analysis. The most important thing is to get the resource requirement reviewed by the hardware team, software team and a third party several times before submitting it to the client. Detailed design document preparation Once the SRS is approved by the client, the next phase is to make the detailed design document. This document should consist of: 1. Brief introduction to the project 2. FPGA part details with proper specification 3. Detailed block diagram depicting the internal modules of the FPGA design 4. Top-level module block diagram showing input and output ports with their active levels and voltage levels which are connected to the external peripherals, connectors and debug points 5. Hierarchical tree of the modules 6. Each module should have: i. Detailed explanation of the functionality ii. Register information iii. List of input and output ports with source and destination module name, and active level of the signal iv. A block diagram/digital circuit diagram of finitestate machines indicating how the RTL will be implemented v. Clock frequency to be used, if a synchronous module is used vi. Reset logic implementation vii. File name which will be implemented viii. Approximate FPGA resource utilization ix. Testbench for testing each module independently 7. Input system clock frequency and reset level 8. Explanation of how the internal clock frequencies are derived-using phase-locked loop (PLL) or delay-locked loop (DLL) with the input clock. Also, explain how the global clock buffers are used. Mention clock signals with their frequency and voltage levels that are driven out of the FPGA for external peripherals. 9. A simulation environment setup for the design (called 'device under test') with a top-level testbench. A block diagram indicating how the clock source, reset and pattern generators, and bus functional modes are connected to the top-level module under testing will be helpful here. Mention how log files are used to register the activity of the required signal 10. Make a page with the heading 'FPGA Synthesis and]

Figure 6. Figure 2 - 4 :
24[image: Figure 2-4 : FPGA design flowchart]

Figure 7. adder 4 .
4[image: Memory (M) Stage a. Data memory is read (lw) or written (sw) using the address calculated by the ALU in EXstage. b. ZERO output of ALU and BRANCH signal generated by the control unit are ANDed to determine the fate of branch (taken or not taken). 5. Write Back (WB) Stage a. Result produced by ALU in EX stage (R-type) or data read from data memory in M stage(lw) is written in destination register. The data to be written in destination register is selected via multiplexer controlled by the control signal MemToReg.]

Figure 8. Figure 2 - 5 :
25[image: Figure 2-5 : MIPS five-stage pipeline ii. MIPS register MIPS have 32 common register ($0-$31). The Table 2-1 below describes the aliases and function of these 32 registers.Table 2-1 : MIPS register]

Figure 9.
[image: -1 shows, IF stage is made of two modules -program pointer register PC and program memory module.]

Figure 10. Figure 3 - 1 :
31[image: Figure 3-1 : IF stage module division]

Figure 11.
[image: Journal of C omp uter S cience and T echnology Volume XV Issue II Version I Year () A 2015 Design of a Five Stage Pipeline CPU with Interruption System As Figure 3-2 shows, ID stage is made of three modules -pipeline register, common register file and control unit.]

Figure 12. 14 GlobalFigure 3 - 2 :
1432[image: Figure 3-2 : ID stage module division]

Figure 13. Figure 3 - 3 :
33[image: Figure 3-3 : EXE stage module division]

Figure 14.
[image: -4 shows, MEM stage is made of a RAM module. Global Journal of C omp uter S cience and T echnology Volume XV Issue II Version I Year () A 2015 Design of a Five Stage Pipeline CPU with Interruption System iv. The design of the memory stage MEM 1. Functional description MEM stage is the fourth stage of the pipeline. Its main function is to read and write data memory.]

Figure 15. Figure 3 - 4 :Figure 3 - 5 :
3435[image: Figure 3-4 : MEM stage module division]

Figure 16. Global
[image: Journal of C omp uter S cience and T echnology Volume XV Issue II Version I Year () A 2015 Design of a Five Stage Pipeline CPU with Interruption System Solution First we'll analyze what lead to data hazard.]

Figure 17. Figure 3 - 6 :Figure 3 - 7 :
3637[image: Figure 3-6 : MEM stage module division]

Figure 18. Figure 3 -
3[image: Figure 3-9 : pipeline bubble When specific to the logic circuit design, consider by adding enable control signal to control PC and ID stage's pipeline register, thus to stall the pipeline.]

Figure 19. Figure 3 - 10 :
310[image: Figure 3-10 : Delay the pipeline for two cycles 2. Delay the pipeline for one cycle. If we can identify the address and condition in ID stage, then only one]

Figure 20. Figure 3 -
3[image: Figure 3-11 : pipeline bubble Solutions for control hazard in MIPS architecture MIPS architecture introduces Branch delay slot concept and it solves the problem of control hazard. Branch delay is an instruction after a branch instruction.No matter branch occurs or not it's always executed. Besides, the instruction in the delay slot is committed before branch instruction.In the pipeline, branch instruction has to wait until the second stage to identify the address of next instruction. The instruction fetch stage of pipeline will not work until branch instruction is executed, therefore the pipeline has to waste (block) a time slice.To use this time slice, we define a time slice after branch instruction as branch delay slot. In the branch delay slot the instruction is always executed, and branching occurs whether or not it doesn't matter. In this]

Figure 21.
[image: -12 shows.]

Figure 22. Figure 3 -
3[image: Figure 3-12 : pipeline bubble]

Figure 23. Figure 3 -
3[image: Figure 3-13 : structure hazards Solution methods in this paper In this paper, since we use separated I-cache and D-cache, structure hazard is avoided.]

Figure 24. ?
[image: Software interrupts -Two software interrupt requests are made via software writes to bits IP0 and IP1 of the Cause register. ? Hardware interrupts -Up to six hardware interrupt requests numbered 0 through 5 are made via implementation-dependent external requests to the processor. ? Timer interrupt -A timer interrupt is raised when the Count and Compare registers reach the same value. ? Performance counter interrupt -A performance counter interrupt is raised when the most significant bit of the counter is a one, and the interrupt is enabled by the IE bit in the performance counter control register. Timer interrupts, performance counter interrupts, and hardware interrupt 5 are combined in an implementation dependent way to create the ultimate hardware interrupt 5.]

Figure 25. Figure 4 - 1 :
41[image: Figure 4-1 : Interrupt occurs while ID's executing the transfer instruction]

Figure 26. Figure 4 - 2 :
42[image: Figure 4-2 : Interrupt occurs while ID's the delay slot (3) Interrupt occurs in general situationThe design idea in this circumstance is to response to the interrupt in ID stage, to abolish the next instruction, and write the address of the next instruction into EPC. In this case we don't need to set the BD to 1. The pipeline design in this case is identical to the second situation, so It is unnecessary to go into details here.iii. Precise interrupt of the pipeline CPUThe pipeline CPU puts the address that causes exception into EPC. If this instruction is in the delay slot, then put its previous branch or jump address into EPC and set the BD as 1. The following descripts in detail the methods to handle pipeline exception.]

Figure 27. Figure 4 - 3 :
43[image: Figure 4-3 : Interrupt occurs in general situation (2) Unimplemented instructionThe following picture shows the pipeline that CPU's executing unimplemented instructions in the delay slot. In this case EPC will save the address of its previous instruction PCE, the BD bit of Cause register should be set to 1.Figure4-4 shows the pipeline progress that CPU executing unimplemented instruction. It is similar with the implementation of the syscall instruction.]

Figure 28. Figure 4 - 4 :
44[image: Figure 4-4 : Interrupt occurs in general situation]

Figure 29. Figure 4 - 5 : 3)
453[image: Figure 4-5 : Interrupt occurs in general situation]

Figure 30. Figure 5 - 1 :
51[image: Figure 5-1 : Typical FPGA design & verification overflow a) Pipeline verificationWe implement the idea of bottom-up, hierarchical verification. Firstly, we run functional simulation for single module. If the circuit can realize logic function then we gate-level simulation for every single module. When all the sub-module pass verification, we run simulation for each stage of the pipeline and finally the whole pipeline circuit.? IF stageIF stage has two functions: (1) calculate the instruction address (2) fetch instruction and pipeline process. As Figure5-2 shows, when reset signal clrn is low, register PC is set to initial value 0. Signal PC4 the address value plus 4, at this time the enable signal of register PC is low, and stage IF doesn't work yet. When reset signal and enable signal turns high, register PC starts to work. We can see that PC of continues adding 4 with the change of clk signal, which proves that stage IF can finish address calculating. Meanwhile, instruction signal ins changes with the change of PC4 signal, and the output corresponding with ROM address of the]

Figure 31. Figure 5 - 2 :
52[image: Figure 5-2 : IF stage verification ? ID stage ID stage has three functions: (1) decode the instruction fetched from instruction cache (2) put the corresponding control word, immediate word and address value to control unit and register file (3) control unit output corresponding signals according to the input logic.In this chapter we will verify the regfile and control unit.As Figure5-3 shows, it's each signal of register file and their simulation waves. Clrn is reset signal. d is input data value. qa is the output value of register file output a. qb is the output value of register file output b. ma is qa's output address, which means corresponding]

Figure 32. Figure 5 - 3 :
53[image: Figure 5-3 : regfileverification Each signal of control unit and corresponding simulation waves are shown in Figure 5-4. Since control unit is pure logic circuit, we can see apparent glitch in the output wave of the circuit. The main signals are as follows: aluc controls the output of signal alu. Op is instruction word, representing instruction code.Pcsource controls the mux for address source of pc. We can see from the simulation waves that the control unit can output correct control logic. Further verification will be shown in the later chapter.]

Figure 33.
	????????????ç?"¨?????????????
	??????????ç?"±???ä½?"???????????
	??????ç?"µ????????IC???????CPU??
	????????????(??????)?CPU????
	?????????????????ç?"?????????
	?????åº?"ç?"¨ä¸?"ç?"¨?????????????????
	????????????????å?"�??
	?????????????????????????ç ?"
	???????????????????RISCCPU?ç»?"??
	???RISCç»?"??MIPSCPU???????????????
	???é?"º?????????????MIPS????5???
	?CPU?????CPU?????????????????
	???????ROM?RAM????ç?"¨EDA????Modelsim?
	??????????????????????????
	Altera Cyclone4 FPGA ?????.???????ç»?"?
	?????????????
	?é?"®??CPU?MIPS???????
	I. Introduction
	? ?-
	??????????????????????????
	?????????????æ??"???"CPU"??????
	??ç?"¨???????????????????????2
	0??60??????(Weik1961)????????????
	?ç?"µ???????????åº?"ç?"¨???????æ¯?"?"?
	????"????????????ä½?"????????
	?????????????æ?"�???????æ?"¹????
	???????????????åº?"ç?"¨?????????
	??????????åº?"ç?"¨??CPU???????????

Note: a) Research status of CPU design and trend

Figure 34.
	architecture (1. Instruction Fetch (IF) Stage
	a. Instruction Fetch
	Instruction's address in PC is applied to
	instruction memory that causes the addressed
	instruction to become available at the output lines of
	instruction memory.
	b. Updating PC
	The address in PC is incremented by 4 but what
	is written in PC is determined by the control signal
	PCSrc. Depending upon the status of control signal
	PCSrc, PC is either written by the branch target address
	(BTA) or the sequential address (PC + 4).
	2. Instruction Decode (ID) Stage
	a. Instruction is decoded by the control unit that takes
	6-bit opcode and generates control signals.
	b. The control signals are buffered in the pipeline
	registers until they are used in the concerned stage
	by the corresponding instruction.
	c. Registers are also read in this stage. Note that the
	first source register's identifier in every instruction is
	at bit positions [25:21] and second source register's
	identifier (if any) is at bit positions [20:16].
	d. The destination register's identifier is either at bit
	positions [15:11] (for R-type) or at [20:16] (for lw
	and addi). The correct destination register's
	identifier is selected via multiplexer controlled by the
	control signal RegDst. However, this multiplexer is
	placed in the EX stage because the instruction
	decoding is not finished until the second stage is
	complete. But this identifier is buffered until the WB
	stage because an instruction write sa register in the
	WB stage.
	d) MIPS architecture
	MIPS (originally an acronym for Microprocessor
	without Interlocked Pipeline Stages) is a reduced
	instruction set computer (RISC) instruction set

Figure 35. Table 2 - 1
21			: MIPS register
	;REGISTER	NAME	USAGE
	$0	$zero	constant value 0
	$1	$at	Reserved for assembler
	$2-$3	$v0-$v1 values for results and expression evaluation
	$4-$7	$a0-$a3 arguments
	$8-$15	$t0-$t7 Temporary or random
	$16-$23	$s0-$s7 saved
	$24-$25	$t8-$t9 Temporary or random
	$28	$gp	Global Pointer
	$29	$sp	Stack Pointer
	$30	$fp	Frame Pointer
	$31	$ra	return address

Figure 36. Table 2 -
2		2 : MIPS instruction set
	integer instruction	meaning
	add	add rd, rs, rt #rd ? rs op rt
	sub	sub rd, rs, rt #rd ? rs op rt
	and	and rd, rs, rt #rd ? rs op rt
	Or	or rd, rs, rt #rd ? rs op rt
	Xor	xor rd, rs, rt #rd ? rs op rt
	Sll	sll rd, rt, sa #rd ? rt shift sa
	Srl	srl rd, rt, sa #rd ? rt shift sa
	Sra	sra rd, rt, sa #rd ? rt shift sa
	Jr	jr rs #PC ? rs
	addi	addi rt, rs, imm #rt ? rs + imm
	andi	andi rt, rs, imm #rt ? rs op imm
	Ori	ori rt, rs, imm #rt ? rs op imm
	xori	xori rt, rs, imm #rt ? rs op imm
	Lw	lw rt, offset(rs) #rt ? memory[rs + offset]
	Sw	sw rt, offset(rs) #memory[rs + offset] ? rt
	beq	beq rs, rt, label #if (rs==rt) PC ? label
	bne	bne rs, rt, label #if (rs!=rt) PC ? label
	Lui	j target #PC ? target
	J	jal target #r31? PC+8 ; PC ? target
	Jal	jr rs #PC ? rs
	Interruption and exception instruction	meaning
	syscall	System call
	eret	Exception execution return
	mfc0	Fetch control word
	mtc0	Store control word

Note: III. Design of the Pipeline Circuit a)

Figure 37. Table 3 -
3	1 : aluc control signal
	aluc[3:0]
	X000	ADD
	X100	SUB
	X001	AND
	X101	OR
	X010	XOR
	X110	LUI
	0011	SLL
	0111	SRL
	1111	SRA

Note: © 2015 Global Journals Inc. (US) 1

Figure 38. Table 4 - 2 :
42	ExcCode	Alias	Type	Mask	Description	Stage
	0	Int	Int	IM[0]	External	Any stage
					Interrupt	
	1	Sys	Except	IM[1]	Syscall	ID stage
	2	Unimpl	Except	IM[2]	Non-exist	ID stage
					instruction	
	3	Ov	Except	IM[3]	Overflow	EXE stage

			1

			2

			3

			4

		

			

			
			
		
Notes
1 © 2015 Global Journals Inc. (US)

2 Design of a Five Stage Pipeline CPU with Interruption System

3 © 2015 Global Journals Inc. (US) 1

4 © 2015 Global Journals Inc.

2. Keywords
 Up: Home Previous: 1. Design of a Five Stage Pipeline CPU with Interruption System Next: 3. 64-bit CPU chip manufacturers dominate the market
Central processor broadly means a series of logic machines that can perform complex computer programs. The term has been in use in the computer industry at least since the early 1960s. The form, design, and implementation of CPUs have changed over the course of their history, but their fundamental operation remains much the same.
A computer can have more than one CPU; this is called multiprocessing. All modern CPUs are microprocessors, meaning contained on a single chip. Some integrated circuits (ICs) can contain multiple CPUs on a single chip; those ICs are called multi-core processors. An IC containing a CPU can also contain peripheral devices, and other components of a computer system; this is called a system on a chip (SoC).
Two typical components of a CPU are the arithmetic logic unit (ALU), which performs arithmetic and logical operations, and the control unit (CU), which extracts instructions from memory and decodes and executes them, calling on the ALU when necessary.
Not all computational systems rely on a central processing unit. An array processor or vector processor has multiple parallel computing elements, with no one unit considered the "center". In the distributed computing model, problems are solved by a distributed interconnected set of processors. 1. Smaller wiring width and more transistors Nowadays, Intel's and AMD's CPUs have used 0.18 or even 0.13 micrometer technology. For current silicon chips, reducing the wiring width is the key to raising the speed of the CPU.
Experts predict that the design of monolithic integrated chip system will reach such a number of indicators -the minimum feature size reaches 0.1 micrometer, chip integration reaches 200 million transistors. And some breakthroughs are also made from the aspect of the production process. IBM has developed a new chip packaging technology, by which the chip manufacturers can use aluminum instead of the traditional copper wire connections to connect transistors on a chip. Since copper conductors can be made thinner than the aluminum wire, so that the chip can be integrated on a larger number of transistors, which makes the packaging unit of the computing power has been greatly improved. Copper processor chip has become the future direction of development. Researches of copper chip have been performed by many chipmakers such as Intel and AMD.

 Up: Home Previous: 1. Design of a Five Stage Pipeline CPU with Interruption System Next: 3. 64-bit CPU chip manufacturers dominate the market

3. 64-bit CPU chip manufacturers dominate the market
 Up: Home Previous: 2. Keywords Next: 4. Higher bus speeds
With the release of Intel Itanium, personal PC processor market will also be transited into 64-bit. 64-bitCPUcan handle64-bitdataand 64-bitaddresses and can provide higher accuracy and larger memory addressing range.

 Up: Home Previous: 2. Keywords Next: 4. Higher bus speeds

4. Higher bus speeds
 Up: Home Previous: 3. 64-bit CPU chip manufacturers dominate the market Next: 5. Efficient pipelining
Nowadays the bus has increasingly limited the performance of CPU. For which various manufacturers are seeking ways to improve bus speed. It's expected that within three years Bus speed should be able to exceed 1GHz. Reduced Instruction Set Computing is a design pattern for computer central processor. This design idea has reduced the number of instructions and addressing modes, making implementation easier, higher instructions parallelism, and a more efficient compiler. Current common RISC microprocessors includes DEC Alpha?ARC?ARM?AVR?MIPS?PA-RISC?Power Architecture (PowerPC?PowerXCell) and SPARC.
From the earliest, RISC's name comes from the Berkeley RISC project held by David Patterson in the University of California, Berkeley. But before him, people has been proposed a similar design philosophy. IBM 801 project, held by John Cork, started in 1975 and finished in 1980, probably is the first system designed under the concept of reduced instruction set. This design concept originated from the discovery that although many of the features of traditional processor are designed to make the code easier to write, but these complex features require several cycles to achieve and often are not used by the program. In addition, the difference between the speed of the processor and the main memory has become increasingly bigger. Prompted by these factors, a series of new technologies were introduced, making the processor's instruction executed in pipeline while reducing the number of processor memory access.
In the early period, Characteristics of such an instruction set is the small number of instructions, each instruction word in standard length, short execution time, and implementation details of the central processor for the machine-level program is visible and so. In fact in the later development, RISC and CISC have learned each other during the process of competitions. Now the RISC instruction set also has reached hundreds and operating cycle are no longer fixed. Nonetheless, fundamental principles of RISC design -optimization for pipelined processor -have not changed yet. And following this principle, a concurrent variant of RISC is developed -named VLIW -combining the short and length unity instructions into very long instruction. Each time you run a very long instruction, equal to concurrently run multiple short instructions.
On the other hand, the most common complex instruction set x86 CPU, although the instruction set is CISC, but it will make every effort to accelerate the hardware circuit to control commonly used simple instructions. Complex instruction which is not used often will be given to micro-code sequencer to "decode slowly and run slowly". Hence it's called "RISCy x86".
RISC processor should be designed to not only make effective execution pipeline processing, but also enable optimizing compiler optimized instruction generated code. Below, we will describe RISC processor design principles and techniques.

 Up: Home Previous: 3. 64-bit CPU chip manufacturers dominate the market Next: 5. Efficient pipelining

5. Efficient pipelining
 Up: Home Previous: 4. Higher bus speeds Next: 6. Control hazards (branch hazards) Branching
The relation in pipeline means because there is some association in adjacent or similar instruction, later instruction cannot be executed within originally designated clock cycle. In general, the pipeline relation is divided into the following three types. 1. Data hazards Data hazards occur when instructions that exhibit data dependence modify data in different stages of a pipeline. Ignoring potential data hazards can result in race conditions (sometimes known as race hazards). 2. Structural hazards A structural hazard occurs when a part of the processor's hardware is needed by two or more instructions at the same time. A canonical example is a single memory unit that is accessed both in the fetch stage where an instruction is retrieved from memory, and the memory stage where data is written and/or read from memory. [3] They can often be resolved by separating the component into orthogonal units (such as separate caches) or bubbling the pipeline.

 Up: Home Previous: 4. Higher bus speeds Next: 6. Control hazards (branch hazards) Branching

6. Control hazards (branch hazards) Branching
 Up: Home Previous: 5. Efficient pipelining Next: 7. Short cycle time
hazards (also known as control hazards) occur with branches. On many instruction pipeline microarchitectures, the processor will not know the outcome of the branch when it needs to insert a new instruction into the pipeline (normally the fetch stage).
There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, register forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm.

 Up: Home Previous: 5. Efficient pipelining Next: 7. Short cycle time

7. Short cycle time
 Up: Home Previous: 6. Control hazards (branch hazards) Branching Next: 8. Load/Store Structure
To increase the clock frequency by optimizing the process. To optimize circuit design structure, reduce instruction fetching time and read/write latency, thus reducing instruction period, which can greatly improve the efficiency of the machine.

 Up: Home Previous: 6. Control hazards (branch hazards) Branching Next: 8. Load/Store Structure

8. Load/Store Structure
 Up: Home Previous: 7. Short cycle time Next: 9. Year ()
Load/Store Structure is used to transfer data between register file and memory. Load is used to fetch data from memory, while store is used to store data into memory. These two instructions are used frequently and is the most significant one in the instruction set. Because the other instructions can only handle register file.When data is in the memory, you have to load the data into register file, and store the data back into it after execution. In the register file, you don't have to access the memory when data have to be used again. This Load/Store structure is the key for single period clock execution. 4. Simple fixed format instruction system RISC designers focus on those frequently used commands, and try to make them simple and efficient features. For not commonly used functions we often

 Up: Home Previous: 7. Short cycle time Next: 9. Year ()

9. Year ()
 Up: Home Previous: 8. Load/Store Structure Next: 10. No micro-code technology
A accomplished through a combination of instruction. Therefore, when implementing the special features on RISC machines, the efficiency may be lower, but you can use pipelining and superscalar techniques to improve and make up. While the CISC instruction set computer is rich, with special instructions to perform specific functions. Therefore, the efficiency of handling special tasks is higher.

 Up: Home Previous: 8. Load/Store Structure Next: 10. No micro-code technology

10. No micro-code technology
 Up: Home Previous: 9. Year () Next: 11. Huge register file
Since RISC use Simple, rational and simplified instruction addressing modes, so it does not need micro-code technology, which means without microcode ROM, but execute instruction directly in the hardware. This means eliminating the original machine microcode instructions into the intermediate step, and it reduce the number of machine cycles needed to execute an instruction. Also it saves space so that the chip can be saved using the microprocessor chip space expansion function.

 Up: Home Previous: 9. Year () Next: 11. Huge register file

11. Huge register file
 Up: Home Previous: 10. No micro-code technology Next: 12. Harvard bus architecture
A register file (register file) is an array consisting of a plurality of registers in the CPU, which usually realized by a fast static random access memory (SRAM).This RAM has a dedicated reading port and writing port, multiple concurrent accessing different registers. CPU's instruction set architecture is always defined a number of registers used for temporary storage of data between memory and CPU computing components. In a more simplified CPU, these architectures registers (architectural registers)correspondence with the physical register within the CPU. In a more complex CPU, we use register renaming techniques, during the execution architecture which makes physical storage entry in the register which corresponds to the register file(physical entry stores)is dynamically changed. Register file is part of the instruction set architecture. The program can be accessed, which is transparent to the CPU cache (cache) different.

 Up: Home Previous: 10. No micro-code technology Next: 12. Harvard bus architecture

12. Harvard bus architecture
 Up: Home Previous: 11. Huge register file Next: 13. Delayed branch
Harvard architecture is a memory structure to store program instructions and data separately. First, the CPU read program instruction in the program instruction memory. And then it gets the data address after decoding. Then it reads data in the according data memory, finally handle next execution (usually instruction). Instruction store and data store is separated, while Storing data and instructions can be simultaneously. Data and instruction can have different data width. For example, Microchip's PIC16's program instruction is 14 bit width, while data is 8 bit width. Harvard bus architecture CPU usually has relatively high execution efficient. Program instructions and data organization and storage instructions apart, implementation can be pre fetch the next instruction.

 Up: Home Previous: 11. Huge register file Next: 13. Delayed branch

13. Delayed branch
 Up: Home Previous: 12. Harvard bus architecture Next: 14. The chapters are arranged as follows
Insert one or several effective instruction in the branch instruction. When the program is executed, after these into the instruction execution is completed, then executes the instruction, therefore, transfer instruction seems to be delayed, this technique known as delayed transfer of technology. 9. Hard-wired controller Once control unit was build, unless redesigned and remapping, it's impossible to add new functions. Hard-wired controller is one of the most complex logic components in the CPU. When executes different machine instructions, it decodes the instruction through activates a series of different control signals, making the control unit has few explicit structure and in a mess. Since that, hard-wired controller is replaced by microprogram controller. However, under the same semiconductor process, hard-wired controller is faster than micro-program controller. 10. Assembly technology optimization 11. High-level programming language oriented c) Structure and content
This paper describes the design of a five-stage pipeline CPU with interruption system. Including CPU's research background, instruction set, pipeline data path and the design of interruption and exception system. And we use EDA tools for the simulation of the design. Finally we proof that the design meets the performance requirement.

 Up: Home Previous: 12. Harvard bus architecture Next: 14. The chapters are arranged as follows

14. The chapters are arranged as follows
 Up: Home Previous: 13. Delayed branch Next: 15. II. Development Platform and mips Architecture
Chapter one is the brief introduction of the research background. It mainly introduces the background and related research status and CPU's integrated circuit industry.
Chapter two is the brief introduction of the development platform and MIPS architecture. It mainly introduces the software and hardware development platform for the project and FPGA's design flow. It also introduces MIPS architecture.
Chapter three describes the design of pipeline data path. It introduces the pipeline design method, the composition of the pipeline and design and verification of associated component.
Chapter four describes the design of interruption and exception circuits. It introduces the principal of exception circuits and verification of related components. Chapter five is CPU functional verification.

 Up: Home Previous: 13. Delayed branch Next: 15. II. Development Platform and mips Architecture

15. II. Development Platform and mips Architecture
 Up: Home Previous: 14. The chapters are arranged as follows Next: 16. a) Technology for CPU hardware design and implementation i. Hardware description language
This chapter mainly introduces the development platform of this paper -the EDA development and verification system based on Altera Cyclone4 FPGA and Quartus + Modelsim. Then we will introduce the background of our design -MIPS instruction set and architecture.

 Up: Home Previous: 14. The chapters are arranged as follows Next: 16. a) Technology for CPU hardware design and implementation i. Hardware description language

16. a) Technology for CPU hardware design and implementation i. Hardware description language
 Up: Home Previous: 15. II. Development Platform and mips Architecture Next: 17. Global Journal of C omp uter S cience and T echnology
In electronics, a hardware description language or HDL is a specialized computer language used to program the structure, design and operation of electronic circuits, and most commonly, digital logic circuits.
A hardware description language enables a precise, formal description of an electronic circuit that allows for the automated analysis, simulation, and simulated testing of an electronic circuit. It also allows for the compilation of an HDL program into a lower level specification of physical electronic components, such as the set of masks used to create an integrated circuit.
A hardware description language looks much like a programming language such as C; it is a textual description consisting of expressions, statements and control structures. One important difference between most programming languages and HDLs is that HDLs explicitly include the notion of time.
HDLs form an integral part of Electronic design automation systems, especially for complex circuits, such as microprocessors.
ii. Structure of HDL HDLs are standard text-based expressions of the spatial and temporal structure and behavior of electronic systems. Like concurrent programming languages, HDL syntax and semantics include explicit notations for expressing concurrency. However, in contrast to most software programming languages, HDLs also include an explicit notion of time, which is a primary attribute of hardware. Languages whose only characteristic is to express circuit connectivity between a hierarchy of blocks are properly classified as netlist languages used in electric computer-aided design (CAD). HDL can be used to express designs in structural, behavioral or register-transfer-level architectures for the same circuit functionality; in the latter two cases the synthesizer decides the architecture and logic gate layout.
HDLs are used to write executable specifications for hardware. A program designed to implement the underlying semantics of the language statements and simulate the progress of time provides the hardware designer with the ability to model a piece of hardware before it is created physically. It is this excitability that gives HDLs the illusion of being programming languages, when they are more precisely classified as specification languages or modeling languages. Simulators capable of supporting discreteevent (digital) and continuous-time (analog) modeling exist, and HDLs targeted for each are available. It is certainly possible to represent hardware semantics using traditional programming languages, which operate on control flow semantics as opposed to data flow, such as C++, although to function as such, programs must be augmented with extensive and unwieldy class libraries. Primarily, however, software programming languages do not include any capability for explicitly expressing time, and this is why they cannot function as hardware description languages. Before the recent introduction of SystemVerilog, C++ integration with a logic simulator was one of the few ways to use OOP in hardware verification. SystemVerilog is the first major HDL to offer object orientation and garbage collection.
Using the proper subset of hardware description language, a program called a synthesizer (or synthesis tool) can infer hardware logic operations from the language statements and produce an equivalent netlist of generic hardware primitives to implement the

 Up: Home Previous: 15. II. Development Platform and mips Architecture Next: 17. Global Journal of C omp uter S cience and T echnology

17. Global Journal of C omp uter S cience and T echnology
 Up: Home Previous: 16. a) Technology for CPU hardware design and implementation i. Hardware description language Next: 18. Year ()
Volume XV Issue II Version I Year () specified behavior. Synthesizers generally ignore the expression of any timing constructs in the text. Digital logic synthesizers, for example, generally use clock edges as the way to time the circuit, ignoring any timing constructs. The ability to have a synthesizable subset of the language does not itself make a hardware description language. iv. Design using HDL As a result of the efficiency gains realized using HDL, a majority of modern digital circuit design revolves around it. Most designs begin as a set of requirements or a high-level architectural diagram. Control and decision structures are often prototyped in flowchart applications, or entered in a state-diagram editor. The process of writing the HDL description is highly dependent on the nature of the circuit and the designer's preference for coding style. The HDL is merely the 'capture language,' often beginning with a high-level algorithmic description such as a C++ mathematical model. Designers often use scripting languages (such as Perl) to automatically generate repetitive circuit structures in the HDL language. Special text editors offer features for automatic indentation, syntax-dependent coloration, and macro-based expansion of entity/ architecture/signal declaration.
The HDL code then undergoes a code review, or auditing. In preparation for synthesis, the HDL description is subject to an array of automated checkers. The checkers report deviations from standardized code guidelines, identify potential ambiguous code constructs before they can cause misinterpretation, and check for common logical coding errors, such as dangling ports or shorted outputs. This process aids in resolving errors before the code is synthesized.
In industry parlance, HDL design generally ends at the synthesis stage. Once the synthesis tool has mapped the HDL description into a gate netlist, this netlist is passed off to the back-end stage. Depending on the physical technology (FPGA, ASIC gate array, ASIC standard cell), HDLs may or may not play a significant role in the back-end flow. In general, as the design flow progresses toward a physically realizable form, the design database becomes progressively more laden with technology-specific information, which cannot be stored in a generic HDL description. Finally, an integrated circuit is manufactured or programmed for use.
v. Simulating and debugging HDL code Essential to HDL design is the ability to simulate HDL programs. Simulation allows an HDL description of a design (called a model) to pass design verification, an important milestone that validates the design's intended function (specification) against the code implementation in the HDL description. It also permits architectural exploration. The engineer can experiment with design choices by writing multiple variations of a base design, then comparing their behavior in simulation. Thus, simulation is critical for successful HDL design.
To simulate an HDL model, an engineer writes a top-level simulation environment (called a testbench). At minimum, a testbench contains an instantiation of the model (called the device under test or DUT), pin/signal declarations for the model's I/O, and a clock waveform. The testbench code is event driven: the engineer writes HDL statements to implement the (testbench-generated) reset-signal, to model interface transactions (such as a host-bus read/write), and to monitor the DUT's output. An HDL simulator -the program that executes the testbench -maintains the simulator clock, which is the master reference for all events in the testbench simulation. Events occur only at the instants dictated by the testbench HDL (such as a reset-toggle coded into the testbench), or in reaction (by the model) to stimulus and triggering events. Modern HDL simulators have fullfeatured graphical user interfaces, complete with a suite of debug tools. These allow the user to stop and restart the simulation at any time, insert simulator breakpoints (independent of the HDL code), and monitor or modify any element in the HDL model hierarchy. Modern simulators can also link the HDL environment to usercompiled libraries, through a defined PLI/VHPI interface. Linking is system-dependent (Win32/Linux/SPARC), as the HDL simulator and user libraries are compiled and linked outside the HDL environment.
Design verification is often the most timeconsuming portion of the design process, due to the disconnect between a device's functional specification, the designer's interpretation of the specification, and the imprecision of the HDL language. The majority of the initial test/debug cycle is conducted in the HDL simulator environment, as the early stage of the design is subject to frequent and major circuit changes. An HDL description can also be prototyped and tested in hardware -programmable logic devices are often used for this purpose. Hardware prototyping is comparatively more expensive than HDL simulation, but offers a realworld view of the design. Prototyping is the best way to check interfacing against other hardware devices and hardware prototypes. Even those running on slow FPGAs offer much shorter simulation times than pure HDL simulation. b) EDA system i. QuartusII Quartus II is a software tool produced by Altera for analysis and synthesis of HDL designs, which enables the developer to compile their designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target device with the programmer. The latest version is 13sp1 which is a service pack of version 13.

 Up: Home Previous: 16. a) Technology for CPU hardware design and implementation i. Hardware description language Next: 18. Year ()

18. Year ()
 Up: Home Previous: 17. Global Journal of C omp uter S cience and T echnology Next: 19. Global Journal of C omp uter S cience and T echnology
ii. Modelsim
Mentor Graphics was the first to combine single kernel simulator (SKS) technology with a unified debug environment for Verilog, VHDL, and SystemC. The combination of industry-leading, native SKS performance with the best integrated debug and analysis environment make ModelSim® the simulator of choice for both ASIC and FPGA designs. The best standards and platform support in the industry make it easy to adopt in the majority of process and tool flows. To level up with the new technology, both Xilinx and Altera have come up with new series of FPGAs (Virtex 7 from Xilinx and Stratix-V from Altera), which are manufactured with TSMC's 28nm silicon technology. These FPGAs focus on a high speed with low power consumption using various parameters and bringing down the FPGA core voltage to as low as 0.9V. Along with the new FPGAs, Xilinx and Altera are also focused on improving their synthesis tools to meet the routing constraints and to analyze the timing and power consumption of the FPGA.

 Up: Home Previous: 17. Global Journal of C omp uter S cience and T echnology Next: 19. Global Journal of C omp uter S cience and T echnology

19. Global Journal of C omp uter S cience and T echnology
 Up: Home Previous: 18. Year () Next: 20. Execution (EX) Stage
Volume XV Issue II Version I Year ()
Figure 2-3 : FPGA architectureAs the aim here is to learn the basic technique of FPGA design to work with both the tools and devices, let's get back to the design flow through the steps.
Step 1: Requirement analysis and SRS preparation Before starting work on the design, all requirements should be documented as system requirement specification (SRS) by designers and approved by various levels in the organization, and most importantly, the client. During this phase, FPGA designers, along with the hardware team, should identify suitable FPGAs for the project. This is very important because designers need to know parameters such as the I/O voltage levels, operating frequency and external peripheral interfaces.
It is also important to determine which IP cores are available with the tools or FPGA family used for the project. Some IP cores are free, while others are licensed and paid for. This cost should be reviewed several times by the team before releasing it to the client and listed separately for approval from the client or management.
The SRS should contain the following (the list pertains to the FPGA only): 1. Aim of the project 2. Functionalities to be handled by the design, followed by a short description Resource Utilization.' Keep it blank with a note that once the final implementation is done, this page will be updated 11. Under the heading 'Timing Analysis,' mention the major timing parameters of the control signals to be maintained, with a timing budget and waveform drawn manually or using timing analyzer tool.
Mention the major timing constraints that will be used in the UCF or QSF files of the design As mentioned in Step 1, the FPGA team members, hardware and software team members and architects should review the document at several stages before releasing it to the client.
Step 3: Design entry and functional simulation Each module owner should develop a testbench for his module, capture simulated waveforms or assertion-based log report, and get it reviewed by the team lead. Before going for synthesis, every module should be verified thoroughly for functionality using simulation. Regular code review will help to reduce errors and simulation time. Once the simulation of individual modules is done, the next step is to integrate the module and do full-system-level functional simulation with assertion-based log report. Step 4: Synthesis If the functional simulation satisfies the requirement, the next phase is synthesis.
In this phase, the integrated project is synthesized using a vendor-specific synthesis tool based on the optimization settings. Whenever RTL is modified, it is always good to complete Step 3 with unitlevel and full-system functional simulation. Always follow vendor-specific coding guidelines and library modules for better optimization of the design.
During this phase, synthesis tools verify the design for syntax errors and do block-level floor planning.
Step 5: Adding design constraints Once synthesis is complete, constraints can be added to the design. These constraints are usually included in a separate flee where the designer lists out the signal with its corresponding FPGA pin number, I/O voltage levels, current-driving strength for output signals, input clock frequency, hard block or module location, timing paths to be ignored, false paths, other IP-specific constraints recommended by the vendor, etc. This information is passed on to the placement phase.
Step 6: Placement and routing phase Before routing, the synthesis tool maps the buffers, memory and clock buffers to the specific vendor libraries. That is, in this phase, logical blocks are translated into physical file format. Then, in the placeand-route process, the tool places and routes the design considering the user constraints and optimization techniques. Timing simulation can be done at this stage to verify the functionality, so that the design meets all the functional and timing requirements.
Step 7: Programming file generation After obtaining a satisfactory timing and functional behavior of the design, it is time to generate the bit file that is downloaded to the FPGA to test the functionality on the board with actual peripherals.
For each stage, the tool will provide the corresponding report files, using which the designer can analyses time delays, power, resource usage, unrouted signals and I/O pins list. In short To summarize the above points, the FPGA design flow is shown as a simple flow-charting Figure 2-3. There may be minor variations in the design flow during the requirement stage and the design and document preparation phase, from one organization or project to another, but the overall FPGA design flow remains the same.

 Up: Home Previous: 18. Year () Next: 20. Execution (EX) Stage

20. Execution (EX) Stage
 Up: Home Previous: 19. Global Journal of C omp uter S cience and T echnology Next: 21. b) Design of each stage of the pipeline
a. This stage is marked by the use of ALU that performs the desired operation on registers(R-type), calculates address (memory reference instructions), or compares registers (branch).
b. An ALU control accepts 6-bitfunctfield and 2-bit control signal ALU Op to generate the required control signal for the ALU. c. BTA is also calculated in the EX stage by a separate iii. MIPS instruction set Instructions are divided into three types: R, I and J. Every instruction starts with a 6-bit opcode. In addition to the opcode, R-type instructions specify three registers, a shift amount field, and a function field; I-type instructions specify two registers and a 16-bit immediate value; J-type instructions follow the opcode with a 26-bit jump target.
Since the MIPS instruction set instruction involves many, not all will be used in our design, so only the selection and design-related instructions are described in this article. Now the MIPS instruction used in this article are listed below, there are two main type of instructioninteger instruction and interrupt and exception handling instructions. The basic concepts of pipelining CPU pipeline is a kind of technology that decomposes instruction into multiple steps, making each step of the operation overlapped, so as to realize a few instructions in parallel processing and to speed up the programming process. Each step has its dependent circuit to handle. When a step is finished, it goes into the next step, and the further step handles the next instruction. When the pipeline technique is adopted, there is no acceleration of single instruction execution, operation steps for each instruction doesn't reduce yet. While different steps of instructions executed at the same time, therefore looked from the overall it speeds up the instruction process, shortens the program execution time. In order to meet the higher clock frequency that common pipeline design can't adapt to, pipeline depth in the high end CPU gradually increases. When the pipeline depth at the 5~6 level and above, usually called super pipelining structure (Super Pipeline).Obviously, the more pipeline stages, each stage time shorter, clock cycle can be designed more short, instruction faster, instruction average execution time is short. Pipelining is by increasing the computer hardware to achieve. It requires each functional section can work independently of each other, which should increase the hardware, correspondingly increase the complexity of control. Without the operating components independent of each other, is likely to occur in various conflicts. For example, to be able to prefetch instructions, we need to increase the hardware instruction, and store the fetched instructions in the instruction queue buffer, so the microprocessor can fetch and execute instructions to operate at the same time.

 Up: Home Previous: 19. Global Journal of C omp uter S cience and T echnology Next: 21. b) Design of each stage of the pipeline

21. b) Design of each stage of the pipeline
 Up: Home Previous: 20. Execution (EX) Stage Next: 22. Module division
i. The design of the instruction fetch stage IF 1. Functional description IF stage is the first stage of the pipeline, it has four main functions. 1) Automatically adds 4 to PC address according to the clock. 2) Take PC address to the instruction memory, and fetch the next instruction from the instruction memory, and pass it to the pipeline register in the next level. 3) Make decision for the instruction process flow. First, when the CPU processes according to the sequence of the instruction address, we choose the address of the next instruction as the address of the previous instruction plus 4. Second, when the CPU performs conditional branch instruction, we use mux to choose branch address. Third, when the CPU performs register branch instruction, we register branch address according to the mux. Fourth, when the CPU performs jump instruction, we use mux to choose branch address.
4) When the control hazard occurs, the CPU fetches temporary instruction and send empty instruction to the decode stage.

 Up: Home Previous: 20. Execution (EX) Stage Next: 22. Module division

22. Module division
 Up: Home Previous: 21. b) Design of each stage of the pipeline Next: 23. Logic implementation
As Figure 3

 Up: Home Previous: 21. b) Design of each stage of the pipeline Next: 23. Logic implementation

23. Logic implementation
 Up: Home Previous: 22. Module division Next: 24. Module division
The design uses 32 bit register with enable bit to implement program pointer register PC. The automatically adding of the address is done by a constant adder with incremental value 4. We use Altera LPM_Mem IP to implement instruction memory quickly.
ii. The design of the instruction decode stage ID 1. Functional description ID stage is the second stage of the pipeline, it has three main functions.
(1) Decode the instruction and control each module of the CPU according to the decoding result.
(2) Implement register file (3) Control the pipeline process through control unit.

 Up: Home Previous: 22. Module division Next: 24. Module division

24. Module division
 Up: Home Previous: 23. Logic implementation Next: 25. Logic implementation
Note: Global

 Up: Home Previous: 23. Logic implementation Next: 25. Logic implementation

25. Logic implementation
 Up: Home Previous: 24. Module division Next: 26. Module division
Realization method of pipeline registers is identical with the PC in the front section, so we will not repeat them. Regfile uses multiplexer for multiple address choice. At the same time, according to MIPS architecture, we set the value of register 0 as constant 0. The control unit all uses a hard-wired logic circuits to achieve.
iii. The design of the execution stage EXE 1. Functional description EXE stage is the thirdstage of the pipeline. Its main functions areto calculate the input data and other logic process according to the control signal aluc. Control signal aluc is defined as follows

 Up: Home Previous: 24. Module division Next: 26. Module division

26. Module division
 Up: Home Previous: 25. Logic implementation Next: 27. Logic implementation
As Figure 3-3 shows, EXE stage is made of ALU and multiplexer.

 Up: Home Previous: 25. Logic implementation Next: 27. Logic implementation

27. Logic implementation
 Up: Home Previous: 26. Module division Next: 28. Module division
Because the ALU to complete a series of logic operations such as addition and subtraction shift, so we need to use special optimization algorithms and architectures, in order to realize the fast operation, and shorten the critical path delay line.

 Up: Home Previous: 26. Module division Next: 28. Module division

28. Module division
 Up: Home Previous: 27. Logic implementation Next: 29. ? data hazards ? structural hazards ? control hazards (branching hazards)
As Figure 3

 Up: Home Previous: 27. Logic implementation Next: 29. ? data hazards ? structural hazards ? control hazards (branching hazards)

29. ? data hazards ? structural hazards ? control hazards (branching hazards)
 Up: Home Previous: 28. Module division Next: 30. i. Data hazard Data hazard
There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, register forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm.

 Up: Home Previous: 28. Module division Next: 30. i. Data hazard Data hazard

30. i. Data hazard Data hazard
 Up: Home Previous: 29. ? data hazards ? structural hazards ? control hazards (branching hazards) Next: 31. ii. Control hazard Control hazard
Data hazards occur when instructions that exhibit data dependence modify data in different stages of a pipeline. Ignoring potential data hazards can result in race conditions (sometimes known as race hazards). There are three situations in which a data hazard can occur:
1. Read after write (RAW),a true dependency 2. Write after read (WAR),an anti-dependency 3. Write after write (WAW), an output dependency For simple pipeline, only RAW may result in data hazard. Other two circumstances can only occur in superscalar CPU. So we will only discuss RAW data hazard in this paper. Situation 1 data hazard occurs when the previous instruction doesn't finish, while its next instruction will use its results. For register level, see the following instruction sequence. add r3, r1, r2 sub r4, r9, r3 or r5,r3, r9 xor r6,r3,r9 and r7, r3, r9
The first instruction put the result of the adding process into register r3.In this case, the following instructions sub, or, xor cannot take the right result in the ID stage. There are two ways to solve this problem. 1. Stall the pipeline. Although this way can fundamentally solve data hazard, it will make pipeline stall and reduce instruction number in unit time. Therefore it is the worst. 2. Use internal forwarding. Let's look into the first and the second instruction. Because when ALU is doing subtraction, addition has been completed. Therefore we allow ALU sent the result of the addition directly to the next instruction in the ID stage to use. This method will not stall the pipeline.
So it has advantages over method one. Situation 2 Can we solve all the data hazard by internal forwarding? No. The result of ALU can push forward from EXE stage and MEM stage to ID stage, while the data that instruction lw read from data memory can only push from MEM to ID. That means if the next instruction is associated with the LW instruction, we have to stall the pipeline for one cycle-results in pipeline bubble.
See the following instruction sequence. lw r3, 0(r1) sub r4, r9, r3 or r5, r3, r9 xor r6, r3, r9 and r7, r3, r9
As Figure 3-9 shows, when the CPU processing the second instruction, it has to stall the pipeline for one cycle to ensure that ID stage gets the right input data, which means the CPU has to repeat the execution for one time. Corresponding to this, we can use logic statements to judge if there is data hazard. Since if we do not take other measures, stalling the pipeline will result in the re-execution of the instruction in the IR stage, so the CPU has to discard the execution for one time. We can achieve this by banning modifying CPU state -to block the write register signal wreg and write memory signal wmem. HDL code is as follows.
Stall = ewreg & em2reg & (ern != 0) & (i_rs & (ern == rs) | i_rt & (ern == rt)) ;Among them, stall is the control signal to stall the pipeline when data hazard occurs. Ewreg is the signal for writing register file in the EXE stage. Em2reg signal controls the data memory to write data into register file.If the condition is true the stall signal turns high, the line suspension.

 Up: Home Previous: 29. ? data hazards ? structural hazards ? control hazards (branching hazards) Next: 31. ii. Control hazard Control hazard

31. ii. Control hazard Control hazard
 Up: Home Previous: 30. i. Data hazard Data hazard Next: 32. Solution methods in this paper
Branching hazards (also known as control hazards) occur with branch. On many instruction pipeline microarchitectures, the processor will not know the outcome of the branch when it needs to insert a new instruction into the pipeline (normally the fetch stage). Solution Traditional ways 1. Delay the pipeline for two cycles. Since the address and condition for branch target are identified in EXE stage, so the next two instructions after beq have already been put into the pipeline. As Figure 3-10 shows. No matter branch occurs or not it's always executed. Besides, the instruction in the delay slot is committed before branch instruction.
In the pipeline, branch instruction has to wait until the second stage to identify the address of next instruction. The instruction fetch stage of pipeline will not work until branch instruction is executed, therefore the pipeline has to waste (block) a time slice.
To use this time slice, we define a time slice after branch instruction as branch delay slot. In the branch delay slot the instruction is always executed, and branching occurs whether or not it doesn't matter. In this way we efficiently take advantage of a time slice, eliminating a "bubble line".

 Up: Home Previous: 30. i. Data hazard Data hazard Next: 32. Solution methods in this paper

32. Solution methods in this paper
 Up: Home Previous: 31. ii. Control hazard Control hazard Next: 33. ç»?"?????
According to the MIPS architecture, this paper chooses a design method which using a delay slot to identify branch target address and condition in ID stage. Whether to branch or not, the one (instruction i) after branch instruction (instruction i+1) is always executed. As if it's instruction i-1. As Figure 3 For the pipeline CPU in this paper, there're 5 branch instructions -jr, beq, bne, j and jal. Since j, jal and jr are unconditional jump instruction, the CPU can identify branch target in ID level. For instruction beq and bne, we consider using XOR gate and NOR gate to realize these two comparisons in ID level.
iii. Structure hazard Structure hazard Structure hazard occurs when multiple instructions visit a hardware component of the processor at the same time. A typical example is an instruction fetches operands from a storage unit while the other one writes into it.
Let's take MIPS pipeline for example. For the early processors, programs and data memory are not separated, as Figure 3-13 shows, there're memory access at the same time in IF and MEM stage. This results in that one of the accesses has to wait for a cycle. For modern processors, the program is stored in L1P Cache and the data is stored in L1D Cache. They are accessed separately so structure hazard is not a problem.

 Up: Home Previous: 31. ii. Control hazard Control hazard Next: 33. ç»?"?????

33. ç»?"?????
 Up: Home Previous: 32. Solution methods in this paper Next: 34. IV. Design of the Interrupt and Exceptional Circuit

 Up: Home Previous: 32. Solution methods in this paper Next: 34. IV. Design of the Interrupt and Exceptional Circuit

34. IV. Design of the Interrupt and Exceptional Circuit
 Up: Home Previous: 33. ç»?"????? Next: 35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception
In this chapter we introduce design of the Interrupt and Exceptional Circuit. First we introduce the concept of interrupt, exception and precise interrupt. And then we introduce the hardware interrupt processing structure with MIPS architecture and the related interrupt exception handling instruction set. Finally, we discuss the pipelined CPU terminal and exception handling circuit realization. Meanwhile, we will provide the RTL diagram and related codes.

 Up: Home Previous: 33. ç»?"????? Next: 35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception

35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception
 Up: Home Previous: 34. IV. Design of the Interrupt and Exceptional Circuit Next: 36. Year ()
In systems programming, an interrupt is a signal to the processor emitted by hardware or software indicating an event that needs immediate attention. An interrupt alerts the processor to a high-priority condition requiring the interruption of the current code the processor is executing (the current thread). The processor responds by suspending its current activities, saving its state, and executing a small program called an interrupt handler (or interrupt service routine, ISR) to deal with the event. This interruption is temporary, and after the interrupt handler finishes, the processor resumes execution of the previous thread.
A hardware interrupt is an electronic alerting signal sent to the processor from an external device, either a part of the computer itself such as a disk controller or an external peripheral. For example, pressing a key on the keyboard or moving the mouse triggers hardware interrupts that cause the processor to read the keystroke or mouse position. Unlike the software type (below), hardware interrupts are asynchronous and can occur in the middle of instruction execution, requiring additional care in programming. The act of initiating a hardware interrupt is referred to as an interrupt request (IRQ).

 Up: Home Previous: 34. IV. Design of the Interrupt and Exceptional Circuit Next: 36. Year ()

36. Year ()
 Up: Home Previous: 35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception Next: 37. . Exception and interrupt handling in MIPS Interrupts
A A software interrupt is caused either by an exceptional condition in the processor itself, or a special instruction in the instruction set which causes an interrupt when it is executed. The former is often called a trap or exception and is used for errors or events occurring during program execution that are exceptional enough that they cannot be handled within the program itself. For example, if the processor's arithmetic logic unit is commanded to divide a number by zero, this impossible demand will cause a divide-by-zero exception, perhaps causing the computer to abandon the calculation or display an error message. Software interrupt instructions function similarly to subroutine calls and are used for a variety of purposes, such as to request services from low level system software such as device drivers. For example, computers often use software interrupt instructions to communicate with the disk controller to request data be read or written to the disk.
ii

 Up: Home Previous: 35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception Next: 37. . Exception and interrupt handling in MIPS Interrupts

37. . Exception and interrupt handling in MIPS Interrupts
 Up: Home Previous: 36. Year () Next: 38. Exceptions
The processor supports eight interrupt requests, broken down into four categories:

 Up: Home Previous: 36. Year () Next: 38. Exceptions

38. Exceptions
 Up: Home Previous: 37. . Exception and interrupt handling in MIPS Interrupts Next: 39. b) Pipeline CPU precise exception and interrupt processing circuit
Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated as a by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruction stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the software exception handler are a function of both the type of exception, and the current state of the processor.

 Up: Home Previous: 37. . Exception and interrupt handling in MIPS Interrupts Next: 39. b) Pipeline CPU precise exception and interrupt processing circuit

39. b) Pipeline CPU precise exception and interrupt processing circuit
 Up: Home Previous: 38. Exceptions Next: 40. . Types of exception and interrupt and associated registers
The complexity of pipelined CPU exception and interrupt handling is mainly reflected in two respects. (1) Pipeline CPU has multiple instructions simultaneously in operation. There is not a time point that all the instructions are executed. (2) MIPS pipeline allows the branch delay. If exception and interrupt occurs in the delay slot of ID stage, then the return address will not be judged. Therefore, to achieve precise exception and interrupt handling, we must carefully study the characteristics of CPU and design of hardware.
i

 Up: Home Previous: 38. Exceptions Next: 40. . Types of exception and interrupt and associated registers

40. . Types of exception and interrupt and associated registers
 Up: Home Previous: 39. b) Pipeline CPU precise exception and interrupt processing circuit Next: 41. Table 4-1 : MIPS exception and interrupt registers
The registers for pipeline CPU exceptions and interrupts are shown as below. The sixth to second bit of the cause register is the codes that generate exception and interrupt. IM [3:0] in the status register is a 4 bit mask. Each corresponding to an exception or interrupt mask bit, 1 allows the exception or interrupt and 0 bans it. S[3:0] is IM[3:0] which is left shifted by 4 bits. EPC is used for saving the return address. If the instruction that causes exception is in the delay slot of branch or jump instruction, then the BD bit is set to 1. Under normal circumstances we set BD to 0.

 Up: Home Previous: 39. b) Pipeline CPU precise exception and interrupt processing circuit Next: 41. Table 4-1 : MIPS exception and interrupt registers

41. Table 4-1 : MIPS exception and interrupt registers
 Up: Home Previous: 40. . Types of exception and interrupt and associated registers Next: 42. V. CPU Verification
The following table lists the exceptions and interrupts may appear which levelin the pipeline. When interrupt occurs EPC saves the return address, and when exception occurs EPC saves the address that causes exception. However, if the abnormal instruction is in delay slots, EPC save the delayed branch instruction address. Therefore, we must have some means to determine whether an instruction in the delay slot. When an exception or interrupt occurs, we need to scrap the subsequent instruction and even the current instruction.
ii. Interrupt response process of the pipeline CPU In order to realize the precise interrupt, we divide the interrupt request into the following 3 kinds of circumstances.
(1) Interrupt occurs while ID's executing the transfer instruction The design idea is to put the address of branch instruction into EPC register, and the base address of interrupt execution into PC. When returns from interrupt execution, the CPU re-execute branch instruction.
As Figure 4-1 shows, if the address of branch instruction is PC in the IF level, then in the ID level is PCD. When ID finish, the CPU write PCD into EPC, and put the entrance address of exception and interrupt into PC. Meanwhile, the cancel signal generated at the ID level is also written to the pipeline register, its output at EXE stage is e_cancel, to abolish the next instruction. When it returns from interrupt, directly write the value of EPC into PC, and re-execute the branch instruction. (2) Interrupt occurs while ID's the delay slot The design idea is to let the instruction in the delay slot be finished. Because the branch address is decoded in ID stage, so we put the address value of PC into EPC. Meanwhile the BD bit in the Cause register should be set to 1.
As Figure 4-2 shows, At the ID level delay slot instruction at the end, the branch target address instruction has been taken into the pipeline, we disable it using e_cancel. The design idea in this circumstance is to response to the interrupt in ID stage, to abolish the next instruction, and write the address of the next instruction into EPC. In this case we don't need to set the BD to 1. The pipeline design in this case is identical to the second situation, so It is unnecessary to go into details here.
iii. Precise interrupt of the pipeline CPU The pipeline CPU puts the address that causes exception into EPC. If this instruction is in the delay slot, then put its previous branch or jump address into EPC and set the BD as 1. The following descripts in detail the methods to handle pipeline exception.
(1) Syscall
No matter using assembly language or high level language to program, we can let the syscall instruction not to appear in the delay slot. Therefore, we consider only usually system call instructions implementation. Figure 4-3 shows the pipeline progress that CPU executing syscall instruction. Jump to exception and interrupt handling program and abolish its next instructions. EPC saves PCD -the address of syscall instruction. As the figure shows the input of the EPC connects to a mux, when it modifies EPC it chooses DATA. The following picture shows the pipeline that CPU's executing unimplemented instructions in the delay slot. In this case EPC will save the address of its previous instruction PCE, the BD bit of Cause register should be set to 1.
Figure 4-4 shows the pipeline progress that CPU executing unimplemented instruction. It is similar with the implementation of the syscall instruction. Figure 4-5 is the pipeline that overflows occurs in normal situation. EPC saves the PCE address of overflow instruction.

 Up: Home Previous: 40. . Types of exception and interrupt and associated registers Next: 42. V. CPU Verification

42. V. CPU Verification
 Up: Home Previous: 41. Table 4-1 : MIPS exception and interrupt registers Next: Appendix A §
Figure 5-1 shows the typical FPGA design and verification overflow. After the design personnel will be HDL code input and comprehensive utilization comprehensive tool, will carry on the first simulation of design: functional simulation. Functional simulation is not with circuit delay parameters, only validation logic function is correct. If the function simulation, then the layout of design, after second times simulation: timing simulation is also the gate level simulation. With Gate level simulation with circuit delay parameters, the result is more accurate, more close to the actual device performance. After passing through the gate level simulation, finally the design is downloaded to the FPGA device.
This paper will adopt the design process, optimizing the design details, in order to achieve high quality and efficient design objective. As Figure 5-3 shows, it's each signal of register file and their simulation waves. Clrn is reset signal. d is input data value. qa is the output value of register file output a. qb is the output value of register file output b. ma is qa's output address, which means corresponding register number. We is write-enable signal, wn is write register number.
When clrn is low, register file is reset, and all the value of registers are set to 0. When clrn turns to high, register file starts to work. When write signal we turns high, wn controls the write register address. As Figure 5-3 shows, the CPU writes value into 0 to 4 register. According to MIPS architecture, 0 register cannot be modified, thus the output of 0 register is always 0. For register 1 to 3, the output is the input value when we is high. So this verifies that register file can work normally and realize the logic function. The function of EXE stage is to calculate the value from ID and put the result to the next stage. According to the control signal passed from ID stage, EXE will finish corresponding calculation in the pipeline clock cycle. Since arithmetic unit may cause long delay, so EXE stage is the critical path of the pipeline. We will verify ALU in this chapter.
As Figure 5-5 shows, it's each signal of ALU and their simulation waves. The definition of the control signals of ALU sees the 3.2.3 section. When ALUC=0 the two input numbers are added, the result is correct. When ALUC=4 the two input numbers are subtracted, the result is correct. The other functions of ALU are verified as above.
We can see from the waveform that, because the signal judging overflow and zero is used in combinational logic circuit, so it will easily produce burr. The function of MEM stage is to load and store data. The main module in MEM stage is data memory. In this paper we use the LPM Ram provided by Altera to achieve this.
As Figure 5-6 shows, it's the simulation wave for data memory. Addr controls the RAM address of data input and output, and we is write enable signal. We can see from the waveform that, when signal we is low, dataout reads data from RAM according to the value of addr. When signal we turns high, dataout writes data into RAM according to the value of addr too. For data 0x0000007F, we can see that it's written into corresponding address, and is read from it. The simulation waves prove that the data memory works correctly.

 Up: Home Previous: 41. Table 4-1 : MIPS exception and interrupt registers Next: Appendix A §

Appendix A §
 Up: Home Next: Appendix B §
Appendix A §

Appendix A.1 Acknowledgements
Foremost, I would like to express my sincere gratitude to my Supervisor Prof.Liu for the continuous support of my thesis work, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me to perform my thesis work and in writing this thesis report.
I also would like to say a big thank you to all my colleagues, and the researchers in the Computer Engineering Center at the Guangdong University of

			
 Up: Home Next: Appendix B §

Appendix B §
 Up: Home Previous: Appendix A § Next: Appendix C §
Appendix B §

Appendix B.1 §
Design of a Five Stage Pipeline CPU with Interruption System VI. Summary and Future Work Through this thesis, Verilog HDL code for a Altera cycloe4 FPGA board was developed, on which a pipeline CPU runs. In chapter 1 we make a brief introduction of the research background. It mainly introduces the background and related research status and CPU's integrated circuit industry. In chapter 2 we describe the development platform and MIPS architecture. There we also introduce the software and hardware development platform for the project and FPGA's design. At the same time, we describe the registers and instructions in our design and MIPS architecture. In chapter 3 we firstly discuss the design of pipeline data path. And we work out some methods for solving pipeline hazards. In Chapter three we describe the design of pipeline data path. It introduces the pipeline design method, the composition of the pipeline and design and verification of associated component. After that, we make the interrupt circuit and whole verification.
In the future, there are two ways to improve this simple CPU. Firstly we will add some modules to the original design, including timer, bus, and the whole CP0 coprocessor. Secondly we will improve the circuit thus to make the whole circuit run in a higher frequency. Generally speaking, more performance analysis such as studying the impact of exceptions on the core performance can be done further to see some interesting and important results.

			
 Up: Home Previous: Appendix A § Next: Appendix C §

Appendix C §
 Up: Home Previous: Appendix B §
Appendix C §

					
	
		Outage capacity optimization for free-space optical links with pointing errors
		
			A A Farid
		,
		
			S Hranilovic
		.
	
	
		Journal of Lightwave Technology
		2007. 25 p. .
	

	
	
		The undergraduate curriculum in computer architecture
		
			A Clements
		.
		 http://www.altera.com/education/univ/unv-index.html36
	
	
		Available,
				May-Jun. 2000. 20 p. .
	

	
	
		Power penalty for burst mode reception in the presence of interchannel crosstalk
		
			A J Phillips
		.
	
	
		IET Optoelectronics
		2007. 1 p. .
	

	
	
		Performance evaluation of optically preamplified digital pulse position modulation turbulent freespace optical communication systems
		
			A O Aladeloba
		,
		
			A J Phillips
		,
		
			M S Woolfson
		.
	
	
		IET Optoelectronics
		February 2012. 6 p. .
	

	
	
		Appendix B Interrupt and Exception Verification Program 0: reset : j start # entry on reset 1: nop 2:EXC_BASE: mfc0 r26, C0_CAUSE # read cp0 Cause reg 3: andi r27, r26, 0xc # get ExcCode, 2 bits here 4: lw r27, j_table (r27) # get address from table 5: nop 6: jr r27 # jump to that address 7: nop c: int_entry: nop #0.interrupt handler deal with interrupt here d: eret # return from interrupt e: nop f:sys_entry: nop # SysCall handler 10: epc_plus4: mfc0 r26, C0_EPC # get EPC 11: addi r26, r26, 4 #EPC + 4 12: mtc0 r26, C0_EPC #EPC ? EPC +4 13: eret #return from exception 14: nop 15: uni_entry: nop 16: j epc_plus4 #return 17: nop 1a: ovf_entry: nop #overflow handler 1b: j epc_plus4 #return 1c: nop 1d: start: addi r8, r0, 0xf # IM,
				
	
	 (3:0] ? 1111 1e: mtc0 r8, C0_STATUS # exc/intr enable)

	
	
		A survey and evaluation of simulators suitable for teaching courses in computer architecture and organization
		
			B Nikolic
		,
		
			Z Radivojevic
		,
		
			J Djordjevic
		,
		
			V Milutinovic
		.
	
	
		IEEE Trans. Educ
		Nov. 2009. 52 (4) p. .
	

	
	
		Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence
		
			D K Borah
		,
		
			D G Voelz
		.
	
	
		Journal of Lightwave Technology
		2009. 27 p. .
	

	
	
		,
		
			Dominic Sweetman
		,
		
			Mips See
		,
		
			Run
		.
		2002. Academic Press.
	

	
	
		The IBM systeml360 Model 91 : Machine philosophy and instruction handling
		
			D W Anderson
		,
		
			F 1 Sparacio
		,
		
			F M Tomasulo
		.
	
	
		IBM 1. Res. Develop
		Jan. 1967. 11 p. .
	

	
	
		Implementing precise interrupts in pipelined processors
		
			E Ozer
		,
		
			S W Sathaye
		,
		
			K N Menezes
		,
		
			S Banerjia
		,
		
			M D Jennings
		,
		
			T M Conte
		.
	
	
		Proceedings. 1998 International Conference on Digital Object Identifier: IO.l109IPACT.l998.727184 Publication Year,
				
			. E Smith,
			A R Pleszkun
		 (editor)
		 (1998 International Conference on Digital Object Identifier: IO.l109IPACT.l998.727184 Publication YearPage(s
)
		1998. 1998. May 1988. 28 p. .
	
	 (A fast interrupt handling scheme for VLIW processors)

	
	
		
			H G Sandalidis
		,
		
			T A Tsiftsis
		,
		
			G K Karagiannidis
		,
		
			M Uysal
		.
		BER performance of FSO links over References Références Referencias,
				
	

	
	
		BZK.SAU: Implementing a hardware and software-based computer architecture simulator for educational purpose
		
			H Oztekin
		,
		
			F Temurtas
		,
		
			A Gulbag
		.
	
	
		Proc. 2nd Int. Conf,
				 (2nd Int. Conf)
		2010. p. .
	

	
	
		
			I T Monroy
		,
		
			E Tangdiongga
		.
		Crosstalk in WDM communication networks,
				 (Norwell, Massachusetts, USA
)
		2002. Kluwer Academic Publishers.
	

	
	
		CAL2: Computer aided learning in computer architecture laboratory
		
			J Djordjevic
		,
		
			B Nikolic
		,
		
			T Borozan
		,
		
			A Milenkovie
		.
	
	
		Comput. Appl. Eng. Educ
		2008. 16 p. .
	

	
	
		Improved error probability evaluation methods for direct detection optical communication systems
		
			J O'reilly
		,
		
			J R F Da Rocha
		.
	
	
		IEEE Transactions on Information Theory
		1987. 33 p. .
	

	
	
		Computer Organization and Design: The Hardware/Software Interface
		
			John L David A Patterson
		,
		
			Hennessy
		.
		1998. Morgan Kaufmann Publishers, Inc.
	

	
	
		Implementation Mechanism of Precise Interrupts in Microprocessors, High Performance Computing Technology
		
			Ke Xi-Ming
		.
		2003. 160 p. .
	

	
	
		
			K W Cattermole
		,
		
			J J O'reilly
		.
		problems of randomness in communication engineering,
				 (Plymouth
)
		1984. Pentech Press Limited. 2.
	
	 (Mathematical topics in telecommunications)

	
	
		Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum
		
			L C Andrews
		,
		
			R L Phillips
		,
		
			C Y Hopen
		.
	
	
		Waves Random Media
		2000. 10 p. .
	

	
	
		Mishra Prabhat, DuttNikil, Nicolau Alex. Specification of Hazards, Stalls, Interrupts, and Exceptions in Expression
		
			L F B Ribeiro
		,
		
			J R F Da Rocha
		,
		
			J L Pinto
		.
		 #01-05.
	
	
		IEEE Transactions on Computers
		USA 21. Smith James.E. (editor)
		2001. 1988. 20 (5) p. .
		
			Dept. of Information and Computer Science, University of California
		
	
	 (Technical Report)
	 (Journal)

	
	
		,
		
			Linux Porting Guide
		.
		 http://www.embedded.com/design/embedded/4023297/Linux-Porting-Guide
		
	

	
	
		Design of Instruction Decoder for Use in China for an Embedded MPU
		
			Liu Shibin
		,
		
			Fan Gaodeyuan
		,
		
			Xiaoya
		.
	
	
		Journal of Northwestern Polytechnic University
		2001. 19 (1) p. .
	

	
	
		Fading reduction by aperture averaging and spatial diversity in optical wireless systems
		
			M A Khalighi
		,
		
			N Schwartz
		,
		
			N Aitamer
		,
		
			S Bourennane
		.
	
	
		Journal of Optical Communications and Networking
		2009. 1 p. .
	
	 (IEEE/OSA)

	
	
		MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS32® Architecture
		
	

	
	
		MIPS® Architecture For Programmers Volume II-A: Introduction to the MIPS32® Architecture
		
	

	
	
		MIPS® Architecture For Programmers Volume III-A: Introduction to the MIPS32® Architecture
		
	

	
	
		A decoupled KILO-instruction processor
		
			M Pericas
		,
		
			A Cristal
		,
		
			R Gonzalez
		,
		
			D A Jimenez
		,
		
			M Valero
		.
	
	
		High-Performance Computer Architecture,
				2006.
	
	 (The Twelfth International Symposium on. On page(s)

	
	
		,
		
			Naoki Fujieda
		,
		
			Takefumi Miyoshi
		,
		
			Kenji Kise
		.
	
	
		SimMips A MIPS System Simulator
		
	

	
	
		FabScalar: Composing Synthesizable RTL Designs of Arbitrary Cores Within a Canonical Superscalar Template
		
			N K Choudhary
		,
		
			S V Wadhavkar
		,
		
			T A Shah
		,
		
			H Mayukh
		,
		
			J Gandhi
		,
		
			B H Dwiel
		,
		
			S Navada
		,
		
			H H Najaf-Abadi
		,
		
			E Rotenberg
		.
		 http://doi.acm.org/10.1145/
	
	
		Proceedings of the 38th Annual International Symposium on Computer Architecture,
				 (the 38th Annual International Symposium on Computer Architecture)
		2011. 2000064.2000067. ACM.
	

	
	
		Understanding the performance of freespace optics
		
			S Bloom
		,
		
			E Korevaar
		,
		
			J Schuster
		,
		
			H A Willebrand
		.
	
	
		Journal of Optical Networking
		June 2003. 2 p. .
	

	
	
		Simple Scalar Simulator Toolset
		 http://www.simplescalar.com/
		
	

	
	
		Fundamentals of Digital Logic with VHDL Design
		
			Stephen Brown
		,
		
			Zvonkovranesic
		.
		2000. McGraw-Hill.
	

	
	
		strong atmospheric turbulence channels with pointing errors
	
	
		IEEE Communications Letters
		2008. 12 p. .
	

	
	
		80 # address of data[0] 2: call : jal sum # call function 3: dslot1: addi r5, r0, 4 # DELAYED SLOT(DS) 4: return: sw r2, 0(r4) # store result 5: lw r9, 0(r4) # check sw 6: sub r8, r9
		
			V Gustin
		,
		
			P Bulic
		.
		 2006. 0: main :lui r1, 0 # address of data[0] 1: ori r4.
	
	
		r4 # sub: r8 ? r9 -r4 7: addi r5, r0, 3 # counter 8: loop: addi r5, r5, -1 # counter -1 9: ori r8, r5, 0xffff # zero-extended : 0000ffff A: xori r8, r8, 0x5555#zero-extended : 0000aaaa B: addi r9, r0, -1 # sign-extended :ffffffff C: andi r10, r9, 0xffff # zero-extended : 0000ffff D: or r6, r10, r9 # or: ffffffff E: xor r8, r10, r9 # xor: ffff0000 F: and r7, r10, r6 # and: 0000ffff 10: beq r5, r0, shift # if r5 =0, goto shift 11: dslot2:nop # DS 12: j loop2 # jump loop2 13: dslot3: nop # DS 14: shift: addi r5, r0, -1 # r5 = ffffffff 15: sll r8, r5, 15 # <<15 = ffff8000 16: sll r8, r8, 16 # <<16 = 80000000 17: sra r8,
				14 p. .
	
	 (Learning computer architecture concepts with the FPGA-based. r8, 16 # >>16 = ffff8000(arith) 18: srl r8, r8, 15 # >>15 = 0001ffff(logic) 19: finish: j finish # dead loop 20: dslot4: nop # delay slot)

	
	
		Checkpoint Repair for Out-of-Order Execution Machines
		
			W-M W Hwu
		,
		
			Y N Patt
		.
	
	
		IEEE Trans. Computers
		Dec. 1987. 36 (l2) p. 522.
	

	
	
		Implementing Precise Interruptions in Pipelined RISC Processors
		
			Wang Chia-Jiu
		,
		
			Emnett Frank
		.
		1993. IEEE. 13 p. .
	

	
	
		New precise interrupt mechanism based on backup-buffer. Computer Engineering and Applications
		
			Xi Chen
		,
		
			Sheng-Bing
		,
		
			Xu-Bang
		.
		2007. 43 p. .
	

	
	
		Altera university program-Learning through innovation
		
			Zhu Ziyu
		,
		
			Li Yamin
		.
	
	
		Altera Corporation
		2005 35. p. 2011.
		
			CPU Chip Logic Design. Tsinghua University Press
		
	

			
 Up: Home Previous: Appendix B §

Information about this book

			Title statement

				Design of a Five Stage Pipeline CPU with Interruption System
			
			Publication

					Publisher
	Global Journals Organisation

					Availability
	
This is an open access work licensed under a Creative Commons Attribution 4.0 International license. Please email us for details and permissions.

				Place of publication
	Cambridge, United States
	Date
	15 January 2015

			Source

				
					
					
					 2710E5689EC6828C384E3AC79A9B4E20.
				Abdulraqeb Alnabihi,
Guangdong University of Technology. Global Journal of Computer Science and TechnologyGJCST 0975-4172. 0975-4350. 10.34257/gjcst. Cambridge, United States: Global Journals Organisation. 15 (2) 1 32.

			
		
			
				
					By Softinator Dynamics Pvt. Ltd.
					
				
			

		
OPS/media/resource11.png
wwreg T
Ik

cimE——

inst[31..0]

wdif31..0]
e
wrn[4 D]D———]_

regfileregfile 1

el

cim
mal4..0]
b[4..0]
wni4..0]

a1.0]

Qal31..0]
abB1.0]

OPS/media/resource12.png
EERNAESREN

mreg
ewreg
emareg
mm2reg
rsrtequ
men(4..0]
ernl4..0]
funcl.0]
opE.0)
rsi4.0]
1401

pipeideucu

wreg
m2reg

reart

aluimm
nostall

sext

shitt

jal

aluc3.0]
fdalt. 0]
fwdbt. 0]
pesourcelt.0]

OPS/media/resource10.png
wpcir @

cli -

ins[31.0) D

peA(31..0E———

dffe32regins

dffe32 regpc

nst[31.0]

OPS/media/resource15.png
Ipm_muxipm_mux_component

data0{31. 0] E——— @
datat{31. 0] E>—— ¢ resul31..0]
selE>——— »

OPS/media/resource16.png
s

ECLT

ADDRI, R2, R3

SUB R4, R1,RS

AND R6, R1, R7

ORRE,R1,RI

XORRIO, R1, R11

LET

e

oy

OPS/media/resource13.png
- —
] il
:
LT
;
i
§
i
L ==

—————————————1

OPS/media/resource14.png
Ipm_ram_dgram

ek
& comb
ek 3
wel
acd{31.0/ B>
datain(31..0] D>

outch g

OPS/media/resource19.png
e i M6 |

wee |

OPS/media/resource17.png
i
I

R

LN

ADD R1,R2, R3

LOAD Ré, 0(R1)

STORE 12(R1), Ré

OPS/media/resource18.png
atereger

==
. o ‘D:’"‘““'“
oo = ratequ-1
e o
= =B
G

OPS/media/resource7.png
'DESIGN REQUIREMENT
‘GATHERING AND SRS

PREPARATIONUPDATION
v
wenT,
DETALED DESIGN D00 CovE REvEN
PREPARATIONUPDATION asE
¥

DESIGN ENTAY THROUGH
SCHEMATICIATL CODING

FAL

FUNGTIONAL SIMULATION|

ADDIMODIFY THE

DESIGN CONSTRAINTS

MAPPING, PLACE
AND ROUTE
TIVING ANALYS'S
AND SIMULATION
Pass.
POWER ANALYSIS
PROGRAMMING
FILE GENERATION

OPS/media/resource22.png
ts v 7 m’njm.w[m R

OPS/media/resource6.png
|
|

INTERCONNECT MATRIX

= =

roceus

Losic
BL0CKS

PP PPPPPPTT

=

WLhdd uééﬁfﬁﬁ{

OPS/media/resource23.png
ViR

add

EX [| MEM

add

add

OPS/media/resource9.png

OPS/media/resource20.png
F D EE MEM W8
IF D EXE MEM WB
sal sal F D EXE MEM WB

FD EXE MEM

OPS/media/resource8.png
MEM
from
Decoche
AU

3

Insiruction sequence ———

OPS/media/resource21.png
F D BE MM W8
IF D EXE MEM W8
sl IF D BE MM W8

IF D EXE MEM

OPS/media/resource3.png
Transistors
Per Die

1010

#1965 Actual Dal
m MOS Arrays 4 MOS Logic 1975 Actual Data
© 1975 Projection
“ Memory

A Microprocessor

107
108
10°
104
10°
102
10!
100.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

OPS/media/resource26.png

OPS/media/resource2.png

OPS/media/resource27.png
E TR VI TS T VRN IS vl D e YT

cime,

T 0 B Y 5 D D D 0T
e e e
T S 5
SO
ST

OPS/media/resource5.png
ANALYZE

MIXED HDL SIMULATION

CREATE SIMULATE MANAGE

OPS/media/resource24.png
Cause

31 43 21

[Bp | Unused [ExcCode [0]
Status

31 87 43

[Unused [s T IM[3:0]]
EPC

31 0

EPC

OPS/media/resource4.png
orpsoc_bench |or1200_monitor |

orpsoc_fpga_top

[eth_top |

[uart_top]

| audio_top |

(2100

[ssvga_top |

OPS/media/resource25.png
Scriptum

et
Entering your Design VSE and VHDL adttor —
and Selecting Hierarchy lesm
18im
Functional Simulation
of your Design
FPGA chip pin assignment
‘Adding Design PlanAhead tool) This checking and
Constraints. validation will be done all
the time, In class and in
I~ your cooperative group

‘Synthesizing and Optimizing

I

Evaluating your Design's Coding Style
and System Features.

Placing and Routing Timing Simulation Static Timing
Your Design i1 of your Design Analysis
=
Generating a Bitstream (PlanAhead tool)

‘Downioading to the Device,

nSysiern Delxiggg amuuom Adept

Creating a PROM, ACE
01 JTAG File NEXYS 2

Spartan-3E

XC3S500E-FG320

OPS/media/resource28.png

OPS/media/resource29.png
H

OPS/toc.html
Contents

		2. Keywords

		3. 64-bit CPU chip manufacturers dominate the market

		4. Higher bus speeds

		5. Efficient pipelining

		6. Control hazards (branch hazards) Branching

		7. Short cycle time

		8. Load/Store Structure

		9. Year ()

		10. No micro-code technology

		11. Huge register file

		12. Harvard bus architecture

		13. Delayed branch

		14. The chapters are arranged as follows

		15. II. Development Platform and mips Architecture

		16. a) Technology for CPU hardware design and implementation i. Hardware description language

		17. Global Journal of C omp uter S cience and T echnology

		18. Year ()

		19. Global Journal of C omp uter S cience and T echnology

		20. Execution (EX) Stage

		21. b) Design of each stage of the pipeline

		22. Module division

		23. Logic implementation

		24. Module division

		25. Logic implementation

		26. Module division

		27. Logic implementation

		28. Module division

		29. ? data hazards ? structural hazards ? control hazards (branching hazards)

		30. i. Data hazard Data hazard

		31. ii. Control hazard Control hazard

		32. Solution methods in this paper

		33. ç»?"?????

		34. IV. Design of the Interrupt and Exceptional Circuit

		35. a) The MIPS exception and interrupt handling principle i. Exception, interrupt and precise exception

		36. Year ()

		37. . Exception and interrupt handling in MIPS Interrupts

		38. Exceptions

		39. b) Pipeline CPU precise exception and interrupt processing circuit

		40. . Types of exception and interrupt and associated registers

		41. Table 4-1 : MIPS exception and interrupt registers

		42. V. CPU Verification

		Appendix A §

		Appendix B §

		Appendix C §

		[About this book]

Guide

		[Title page]

		[The book]

		[About this book]

OPS/media/resource1.png
// AssOCIATION \\
OF RESEARCH |
SOCIETY, USA

OPS/media/resource30.png

OPS/media/resource31.png

OPS/media/resource32.png
H

