A Survey of Existing E-mail Spam Filtering Methods Considering Machine Learning Techniques
Keywords:
e-mail spam; unsolicited bulk email; spam filtering methods; machine learning; algorithm
Abstract
E-mail is one of the most secure medium for online communication and transferring data or messages through the web. An overgrowing increase in popularity, the number of unsolicited data has also increased rapidly. To filtering data, different approaches exist which automatically detect and remove these untenable messages. There are several numbers of email spam filtering technique such as Knowledge-based technique, Clustering techniques, Learningbased technique, Heuristic processes and so on. This paper illustrates a survey of different existing email spam filtering system regarding Machine Learning Technique (MLT) such as Naive Bayes, SVM, K-Nearest Neighbor, Bayes Additive Regression, KNN Tree, and rules. However, here we present the classification, evaluation and comparison of different email spam filtering system and summarize the overall scenario regarding accuracy rate of different existing approaches
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2018-03-15
Issue
Section
License
Copyright (c) 2018 Authors and Global Journals Private Limited

This work is licensed under a Creative Commons Attribution 4.0 International License.