
				Design Complexity for Objective Function Points
			

				Design Complexity for Objective Function Points
			

Table of contents
	1. Design Complexity for Objective Function Points
	2. I.
	3. Unified Modeling Language Background
	4. RET ~ INHERITANCE
	5. II.
	6. What is Architecture Design Complexity (dc)?
	7. IV. Deriving Design Complexity of the Architecture
	8. Deriving Design Complexity as a
	9. VII. Determining the Missing Data for Calculating Design Complexity Values
	10. Summary

	Appendix A §

1. Design Complexity for Objective Function Points
Paul Cymerman ? , Joe Van Dyke ? & Ian Brown ? Abstract-This paper investigates correlating the basic elements of Unified Modeling Language and Cyclomatic Complexity with Function Point Analysis (FPA) principles to develop an automated software functional sizing tool. This concept has been difficult to achieve due to the logical nature of the FPA sizing methodology versus the physical nature of source lines of code (SLOC). In this approach, we examine software complexity from design and maintainability perspectives in order to understand relationships in physical code. Our hypothesis is that this method will "simulate" FPA principles and produce an objective sizing method. This would provide the foundation for an automated tool that scans physical software code to derive "Objective Function Points" (OFPs) functional size measure.

Figure 1. Figure 1 :
1[image: Figure 1: FPA Tables to Curves]

Figure 2. Hypothesis 1 :Figure 2 :Figure 3 :
123[image: Figure 2: "A" Coefficient by Complexity Following the same process for Coefficient B, we have: Setting HIGH to 3; AVG to 2; LOW to 1]

Figure 3. Figure 4 :
4[image: Figure 4: "C" Coefficient by Complexity The complexity on the X-axis is the DC that we are looking for. We now can calculate the coefficients based on DC. Coefficient A = 0.125 * DC^2 -0.125 * DC + 0.25 Coefficient B = -0.475 * DC^2 + 0.875 * DC -0.35 Coefficient C = 0.875 * DC^2 -1.375 * DC + 3.25 This now leads to a Function Point equation dependent on CC and DC: Function Point = (0.125 * DC^2 -0.125 * DC + 0.25) * CC^2 + (-0.475 * DC^2 + 0.875 * DC -0.35) * CC + (0.875 * DC^2 -1.375 * DC + 3.25) Where DC = 1 for LOW; 2 for AVG; 3 for HIGH V.]

Figure 4.
[image: from Function Point mechanics where complexity is the average of [(RET Category DET Category) + (FTR Category DET Category)] Where: ? (RET Category DET Category) = ? (RET Category + DET Category) / 2 ? (FTR Category DET Category) = ? (FTR Category + DET Category) / 2 Converting RETs, FTRs, and DETS to Inheritances, Associations, and Attributes respectively, we get: Design Complexity = Average of [(Inheritance Category Attribute Category) + (Association Category Attribute Category)] Where: ? (Inheritance Category Attribute Category) = ? (Inheritance Category + Attribute Category) / 2 ? (Association Category Attribute Category) = ? (Association Category + Attribute Category) / 2 VI. Determining the Ranges for Low, Avg, and High Design Complexity Values]

Figure 5. Figure 5 :
5[image: Figure 5: First Term Relationship to DC]

Figure 6. Figure 6 :
6[image: Figure 6: Second Term Relationship to DC Performing this exercise for additional Associations, we get the following values for the First Term: ? First Term (Association = 0) = 3.524 ? First Term (Association = 1) = 1.7403 ? First Term (Association = 2) = 1.2486 ? And so on ? Next is the Second Term: ? Second Term (Association = 0) = 3.0199 ? Second Term (Association = 1) = 5.8571 ? Second Term (Association = 2) = 8.9756 ? And so on ?]

Figure 7. Figure 7 : 1 ? 3 ? 3 For?
7133[image: Figure 7: First Term Relationship to Associations Red=HIGH DC; Yellow=AVG DC; Green=LOW DC]

Figure 8. o
[image: For example:? If CC = 7,o then CC bin = 1; then DC = 2, ? Then the OFP = 4]

			1

			2

		

			
		
Notes
1 © 2020 Global Journals

2 © 2020 Global Journals Design Complexity for Objective Function Points

2. I.
 Up: Home Previous: 1. Design Complexity for Objective Function Points Next: 3. Unified Modeling Language Background

 Up: Home Previous: 1. Design Complexity for Objective Function Points Next: 3. Unified Modeling Language Background

3. Unified Modeling Language Background
 Up: Home Previous: 2. I. Next: 4. RET ~ INHERITANCE
e investigated using Unified Modeling Language (UML) [1] to map to Function Points (FPs) [2]. Developed to provide a common language for object-oriented modeling, UML was designed to be extensible in order to satisfy a wide variety of software engineering needs. Like FPs, it was also intended to be independent of any specific programming languages or development methods. [3] Graphical notation represents the UML syntax. UML is defined by the following three categories:
? Static structure diagrams: Describe the structure of a system and include class and object diagrams. ? Behavior diagrams: Describe the behavior /dynamic perspective of a system and include use-case diagrams, interaction diagrams, sequence diagrams, collaborations diagrams, state diagrams and activity diagrams.
? Implementation diagrams: Provide actual source code information including component diagrams and deployment diagrams.
Class diagrams describe the static structure of the model that is objects, classes and relationships between these entities which include generalization and aggregation. They also represent the attributes and operations of the classes.
In order to apply FP concepts in a UML context, we had to translate between the two. To simplify FP terms and definitions into sizing measures that can be easily calculated using a tool, the OFP translation is included in BLUE.
Record Element Type: Most RETs are dependent on a parent -child relationship. In this case, the child information is a superset where a child class/object inherits all attributes and methods of the parent information. In a parent-child structure, there are one-to-many relationships that define the nature of the connection between attributes within entities [4].

 Up: Home Previous: 2. I. Next: 4. RET ~ INHERITANCE

4. RET ~ INHERITANCE
 Up: Home Previous: 3. Unified Modeling Language Background Next: 5. II.
File Type Referenced: Associations between files provide mapping of maintained files by the application [4] FTR ~ ASSOCIATION Data Element Type: UML attributes provide a good indication as to what DETs should be counted in FPA [4].
DET ~ ATTRIBUTES

 Up: Home Previous: 3. Unified Modeling Language Background Next: 5. II.

5. II.
 Up: Home Previous: 4. RET ~ INHERITANCE Next: 6. What is Architecture Design Complexity (dc)?
What is Cyclomatic Complexity?
Cyclomatic Complexity (CC) is a software metric used as a limiting function for measuring the complexity of routines during program development. When the CC of the module exceeds 10 [5], modules are split into smaller modules.
CC is one measure of complexity in software development. This complexity is specific to the ongoing development of routines during overall program development. McCabe references this as Design Complexity (DC) of the Module. It does not address architectural complexity of software design. That would be called the DC of the architecture. The more interactions between objects and the more associations between classes there are, the higher will be the complexity. Both the abstract level of the class as well as the physical level of the objects are taken into consideration. [6] The following statements from Richard Seidl captures the following rational behind DC:
"UML Design Complexity metrics can be defined as the relationship of entities to relationships. The size of a set is determined by the number of elements in that set. The complexity of a set is a question of the number of relationships between the elements of that set. The more connections or dependencies there are relative to the number of elements, the greater the complexity." [6] "The more interactions and associations there are between objects and classes, the greater the dependency of those objects and classes upon one another. This mutual dependency is referred to a coupling. Classes with a high coupling have greater domain impacts" [6] III.

 Up: Home Previous: 4. RET ~ INHERITANCE Next: 6. What is Architecture Design Complexity (dc)?

6. What is Architecture Design Complexity (dc)?
 Up: Home Previous: 5. II. Next: 7. IV. Deriving Design Complexity of the Architecture
This DC is a software metric used to understand the Architecture Design -not just for a specific module, but also between modules. This focuses on the Class (a.k.a. Module), Methods (a.k.a. Functions) and Attributes.
A class is a set of objects that have common structure and behavior. A class consists of a collection of states (a.k.a. attributes or properties) and behaviors (a.k.a. methods). A class represents the abstract matrix of an object before it's instantiated, where an object is an instance of a class.
A method is an operation, which can update the value of the certain attributes of an object.
An attribute is an observable property of the objects of a class.
The overall Architecture Design considers the additional relationships:
Association is a relationship between classes which is used to show that instances of classes could be either linked to each other or combined logically or physically through a semantic relationship Inheritance is a form of Association and a feature of object-oriented programming that allows code reusability when a class includes property of another class.

 Up: Home Previous: 5. II. Next: 7. IV. Deriving Design Complexity of the Architecture

7. IV. Deriving Design Complexity of the Architecture
 Up: Home Previous: 6. What is Architecture Design Complexity (dc)? Next: 8. Deriving Design Complexity as a
The elementary variables in functions above are designated as DET. The functional complexity is estimated as the total number of user-identifiable groups that exists within DETs and is termed as RET in Data Functions and all referenced file types are counted as FTR in Transactions Functions. A corresponding matrix holds the reference function point values for all function types namely the ILF, EIF, EI, EO and EQ, with respect to the range of DET and RET/FTR in each function. The total sum of the high, medium and low count of all operations is the unadjusted function point count.
The goal is to extract the DC from the complexity fundamentally imbedded in these original relationships. This starts with A.J. Albrecht's original Function Point calculations. There are 3 curves, figure 1, that show how the FPs are calculated based on some level of complexity. Mapping the Function Types to Figure 1, we take the "EI" table and map to the complexity value of "1" on the graph. The "EO and EQ" maps to the complexity value of 2. "EIF" maps to a complexity value of 3 and "ILF" maps to a complexity value of 4.

 Up: Home Previous: 6. What is Architecture Design Complexity (dc)? Next: 8. Deriving Design Complexity as a

8. Deriving Design Complexity as a
 Up: Home Previous: 7. IV. Deriving Design Complexity of the Architecture Next: 9. VII. Determining the Missing Data for Calculating Design Complexity Values
Function of Inheritance, Associations and Attributes Referencing Albrecht's original complexity tables regarding DETs, RETs and FTRs, we can substitute Inheritance for RETs; Associations for FTRs and Attributes for DETs to come up with the following table. To focus on Inheritances, Associations, and Attributes, we are moving from RET, FTR, DET categories to Inheritance, Association, and Attributes categories. For Inheritance and Associations, we need to consider cases where there are values of "0" so we need to adjust the information as follows:
Category Low Avg High Inheritance 0 1-4 >4 Associations 0-1 2 >2 Attributes 1-19 20-50 >50The next step is to transform this table into equations. Starting with the Inheritance category, the first row of the table, if we curve fit the values for Inheritance, we will see that the curve, when Inheritance = 0, we intentionally shift the value by 1. Thus, the Xaxis is based by Inheritance+1. This technique avoids dealing with a value of 0 which provides a better fit regression curve. When the value on Y-axis is 2 and Inheritance+1 = 1, this translates to LOW complexity.
When Inheritance+1 is ranges 2 to 5, the Y-axis is greater than 2 and less than or equal to 3. This translates to AVG. When X-axis is greater than 5, the Yaxis is greater than 3 which translates into HIGH.
Next we model the Associations category. From Function Point Theory, FTRs are scaled a lot lower than what is seen in today's coding with respect to Associations even though they are similar. One large program shows an average of 2.5 associations, but can range up to 188. This is very common in development and is a result of improved coding practices since 1979 when FPs were first developed. When the value on Yaxis is 1.5 and Association+1 = 1, this translates to LOW complexity. When Association+1 is ranges 2 to 5, the Y-axis is greater than 2 and less than or equal to 3. This translates to AVG. When X-axis is greater than 5, the Y-axis is greater than 3 which translates into HIGH.
Drawing To understand the response of the DC equation, we calculated every case within a reasonable range.
By producing all these cases, we can isolate when Design Complexities change in value. We observe a pattern that can be expressed through regression. This regression analysis will provide the bounding limits for Low, Avg and High DC.

 Up: Home Previous: 7. IV. Deriving Design Complexity of the Architecture Next: 9. VII. Determining the Missing Data for Calculating Design Complexity Values

9. VII. Determining the Missing Data for Calculating Design Complexity Values
 Up: Home Previous: 8. Deriving Design Complexity as a Next: 10. Summary
We need to transform the matrix to have Attributes inside, Inheritance going across, and the Associations going down. This produces curves showing Attributes as a function of Inheritances. Each curve is phase-shifted due to their dependence on Associations.
Let's focus on the first Attribute Limit equation where the DC = 2 and the Association = 0: ? Attribute_Limit = 27.9 * (Inheritance + 1) ^ -0.701 o When Inheritance + 1 = 1, the Attribute_Limit = 28.0 o When Inheritance + 1 = 2, the Attribute_Limit = 17.0 o When Inheritance + 1 = 3, the Attribute_Limit = 13.0
Note that 27.9 is the First Term and -0.701 is the Second Term.
We now need to estimate the First and Second Terms as a function of DC using regression We now can simplify to a table that provides the OFPs in a simple form: Note that for DC = 0, we needed to minimize the weighting to reflect cases where the design is simplistic in nature. It made little sense to apply a weighting of 3 to a design that had zero Inheritance, zero Associations and zero Attributes. To account for someone thinking of implementing this design, we choose a value of 1 Function Point and went from there using CC.
X.

 Up: Home Previous: 8. Deriving Design Complexity as a Next: 10. Summary

10. Summary
 Up: Home Previous: 9. VII. Determining the Missing Data for Calculating Design Complexity Values Next: Appendix A §
This methodology successfully creates a new and simple OFP table that is dependent on CC and DC. We extracted a DC that captures interface relationships based on inheritances, associations and attributes in the actual code. This DC is based on Albrecht's original analysis where DC was a factor but never exclusively identified. This new table is independent of transactional and database qualifiers. Next steps are to incorporate this methodology into an automated Function Point counter that reads actual source code to extract UML definition such as inheritances, associations and attributes to derive the OFPs. This effort is being implemented into the Objective Function Point counter that will reside in the Unified Code Counter Govt (UCC-G) version and the University of Southern California (USC) Unified Code Counter Java version (UCC-J).

 Up: Home Previous: 9. VII. Determining the Missing Data for Calculating Design Complexity Values Next: Appendix A §

Appendix A §
 Up: Home
Appendix A §

					
	
		Function Point Analysis
		
			A J Albrecht
		.
	
	
		Encyclopedia of Software Engineering
		1994. John Wiley & Sons. 1.
	

	
	
		Using Entity Relationship Diagrams to Count Data Functions
		
			I Brown
		.
		2007.
	

	
	
		Rational, UML, 1.1 Notation Guide, Rational Software
		1997.
	

	
	
		Modeling Metrics for UML Diagrams
		
			Richard Seidl
		.
		2010.
	

	
	
		NIST Special Publication 500-235
		
			T Mccabe
		.
		1996.
	

	
	
		Function Point Measurement Tool for UML Design Specification
		
			T Uemura
		,
		
			S Kusumoto
		,
		
			K Inoue
		.
		Nov 1999. Osaka Japan.
	

			
 Up: Home

Information about this book

			Title statement

				Design Complexity for Objective Function Points
			
			Publication

					Publisher
	Global Journals Organisation

					Availability
	
This is an open access work licensed under a Creative Commons Attribution 4.0 International license. Please email us for details and permissions.

				Place of publication
	Cambridge, United States
	Date
	15 January 2020

			Source

				
					
					
					 2A02435603695CE1F22964AEC0D49784.
					 (Year 2020)
				Paul Cymerman, Joe Van Dyke, Ian Brown. Global Journal of Computer Science and TechnologyGJCST 0975-4172. 0975-4350. 10.34257/gjcst. Cambridge, United States: Global Journals Organisation. 20 (3) 1 6.

			
		
			
				
					By Softinator Dynamics Pvt. Ltd.
					
				
			

		
OPS/toc.html
Contents

		2. I.

		3. Unified Modeling Language Background

		4. RET ~ INHERITANCE

		5. II.

		6. What is Architecture Design Complexity (dc)?

		7. IV. Deriving Design Complexity of the Architecture

		8. Deriving Design Complexity as a

		9. VII. Determining the Missing Data for Calculating Design Complexity Values

		10. Summary

		Appendix A ยง

		[About this book]

Guide

		[Title page]

		[The book]

		[About this book]

OPS/media/resource1.png
Function Points.

16

1

1

10

IFPUG FP Weights

y=05¢-05x+4)

V=025 +0.05¢+ 275

Function Types

® LowComplexity ® AvgComplexity ® High Complexity
Poly. (Avg Complexity)

- Poly. (Low Complexity) Poly. (High Complsity)

OPS/media/resource7.png
Values

120

100

80

60

20

First Term

8725+ 102.82

°

1 Associdtions

OPS/media/resource6.png
value

08

07

06

05

04

03

02

01

00

Second Term For Association =0

y=3.0199x217%

05

15

DC

25

35

OPS/media/resource8.png
Values

10

Second Term

y=2.9779x-0.0048

0.0146x+0.2663

Aassochtions

OPS/media/resource3.png
Coefficient
O Rk N W s VO N ®

C

y =0.875x

-1.375x+3.25

o

Complexity

OPS/media/resource2.png
Coefficient
(=] o o o -
8 5 & ® kN

o

A

y=0.125¢

0.125x+0.25

2
Complexity

OPS/media/resource5.png
120

5245300

05

15

DC

35

OPS/media/resource4.png
Coefficient

y =-0.475x%

0.875x-0.35

Complexity

