Deep CNN Model for Non-Screen Content and Screen Content Image Quality Assessment
DOI:
https://doi.org/10.34257/GJCSTDVOL22IS1PG17Keywords:
deep learning, convolutional neural network (CNN), screen content image (SCI), image quality assessment (IQA), no-reference IQA (NR-IQA)
Abstract
In the current world, user experience in various platforms matters a lot for different organizations. But providing a better experience can be challenging if the multimedia content on online platforms is having different kinds of distortions which impact the overall experience of the user. There can be various reasons behind distortions such as compression or minimal lighting condition while taking photos. In this work, a deep CNN-based Non-Screen Content and Screen Content NR-IQA framework is proposed which solves this issue in a more effective way. The framework is known as DNSSCIQ. Two different architectures are proposed based upon the input image type whether the input is a screen content or non-screen content image. This work attempts to solve this by evaluating the quality of such images
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2022-01-22
Issue
Section
License
Copyright (c) 2022 Authors and Global Journals Private Limited
This work is licensed under a Creative Commons Attribution 4.0 International License.