Comparative Analysis of Selected Filtered Feature Rankers Evaluators for Cyber Attacks Detection
Keywords:
features rankers, cyber-attacks, intrusion, classification, computer security, network packets
Abstract
An increase in global connectivity and rapid expansion of computer usage and computer networks has made the security of the computer system an important issue with the industries and cyber communities being faced with new kinds of attacks daily The high complexity of cyberattacks poses a great challenge to the protection of cyberinfrastructures Confidentiality Integrity and availability of sensitive information stored on it Intrusion detection systems monitors network traffic for suspicious Intrusive activity and issues alert when such activity is detected Building Intrusion detection system that is computationally efficient and effective requires the use of relevant features of the network traffics packets identified by feature selection algorithms This paper implemented K-Nearest Neighbor and Na ve Bayes Intrusion detection models using relevant features of the UNSW-NB15 Intrusion detection dataset selected by Gain Ratio Information Gain Relief F and Correlation rankers feature selection techniques
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2022-11-12
Issue
Section
License
Copyright (c) 2022 Authors and Global Journals Private Limited

This work is licensed under a Creative Commons Attribution 4.0 International License.