An Efficient Approach of Removing the High Density Salt
Keywords:
Abstract
Images are often corrupted by impulse noise, also known as salt and pepper noise. Salt and pepper noise can corrupt the images where the corrupted pixel takes either maximum or minimum gray level. Amongst these standard median filter has been established as reliable - method to remove the salt and pepper noise without harming the edge details. However, the major problem of standard Median Filter (MF) is that the filter is effective only at low noise densities. When the noise level is over 50% the edge details of the original image will not be preserved by standard median filter. Adaptive Median Filter (AMF) performs well at low noise densities. In our proposed method, first we apply the Stationary Wavelet Transform (SWT) for noise added image. It will separate into four bands like LL, LH, HL and HH. Further, we calculate the window size 3x3 for LL band image by Reading the pixels from the window, computing the minimum, maximum and median values from inside the window. Then we find out the noise and noise free pixels inside the window by applying our algorithm which replaces the noise pixels. The higher bands are smoothing by soft thresholding method. Then all the coefficients are decomposed by inverse stationary wavelet transform. The performance of the proposed algorithm is tested for various levels of noise corruption and compared with standard filters namely standard median filter (SMF), weighted median filter (WMF). Our proposed method performs well in removing low to medium density impulse noise with detail preservation up to a noise density of 70% and it gives better Peak Signal-to-Noise Ratio (PSNR) and Mean square error (MSE) values.
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2012-03-15
Issue
Section
License
Copyright (c) 2012 Authors and Global Journals Private Limited
This work is licensed under a Creative Commons Attribution 4.0 International License.