A Survey on Index Support for Item Set Mining
Keywords:
Frequent Item Set, Index Support, Vertical Index, MTR (Modified Transaction Reduction)
Abstract
It is very difficult to handle the huge amount of information stored in modern databases. To manage with these databases association rule mining is currently used, which is a costly process that involves a significant amount of time and memory. Therefore, it is necessary to develop an approach to overcome these difficulties. A suitable data structures and algorithms must be developed to effectively perform the item set mining. An index includes all necessary characteristics potentially needed during the mining task; the extraction can be executed with the help of the index, without accessing the database. A database index is a data structure that enhances the speed of information retrieval operations on a database table at very low cost and increased storage space. The use index permits user interaction, in which the user can specify different attributes for item set extraction. Therefore, the extraction can be completed with the use index and without accessing the original database. Index also supports for reusing concept to mine item sets with the use of any support threshold. This paper also focuses on the survey of index support for item set mining which are proposed by various authors.
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
Published
2011-05-15
Issue
Section
License
Copyright (c) 2011 Authors and Global Journals Private Limited
This work is licensed under a Creative Commons Attribution 4.0 International License.